Quick Table of Contents

1Quick Table of Contents

2Complete Table of Contents

6Game Mechanics

6Platform & OS

7File Management

9Memory Management

9External Code

12Coding Guidelines

13Code Objects

29Control Loop

31Game Object Data

38Data Flow

38Game Physics and Statistics

42Game-Specific Code

55User Interface

55Overview

55Base UI Overview

56Base UI Functionality

67Cut-scene Engine

69Game Specific UI

74Art and Video

74Art

75Video

75Graphics Engine

92Artist Instructions

93Sound & Music

93Overview

93Sound Engineering Instructions

94Voices

95Experimental Features

95Skeletal Animation

96Credits

96Financial Analysis

98Project-Planning Timeline

Complete Table of Contents

1Quick Table of Contents

2Complete Table of Contents

6Game Mechanics

6Platform & OS

6OS

6Distribution Media

6Target Platform

6Required

6Recommended

7File Management

7File I/O

7All-Purpose

7Overview

7Data Structures

7Functions

8Game-Specific

8Overview

8Functions

9Secure File Management

9Directory Structure

9Memory Management

9External Code

9External API’s

9OpenGL 1.2

9DirectSound

9DirectInput

10Xaudio

10Win32

10FlexPorter

10Graphics

11Sound/Music

11Timer

11User Interface (UI)

12Coding Guidelines

12Overview

13Code Objects

13Overview

13Tool Dependencies

14Modular Tools

14Font Tool

14Input

14Overview

16Non-Game Specific

17Controls

18Game Specific

19Audio

19All-Purpose

19Overview

20Data Structures

21Functions

21AudioPlayer Functions

22AudioClass Functions

22Song Functions

23SoundEffect Functions

23Game-Specific

23Overview

24Data Structures

24Functions

25Special Effects

26Structures

29Control Loop

29Control Loop Functions

31Game Object Data

31Data Types

31Data Structures

31Structures

32Classes

32Inheritance Charts

33Class Definitions

33Engines

33Game-Specific

35Audio

36Scripting Engine

36Graphics

38Data Flow

38Game Physics and Statistics

38Movement

38Collision

39Collision File Specification

40Statistics

40Party Statistics

40Character Statistics

40Item Statistics

40Weapon Statistics

40Armor Statistics

41Battle Equations

42Game-Specific Code

42Artificial Intelligence

42Overview

42Functions

43Special Abilities

43Overview

43Battle Engine

43Overview

44Data Structures

44Battle Queue

47Over-World Engine

47Overview

48Data Structures

48Functions

49Pre-Rendered Engine

49Overview

49Scripting Engine – Over-World

49Overview

50Specifics

51Classes

52Scripting Engine – Battle

52Overview

52Specifics

53Classes

54Camera Movement

54Over-world

54Battle Arena

55User Interface

55Overview

55Base UI Overview

55Font

55Gradient

55Bitmap Loader

55Filename List

55Texture Bank

55Dialog String Database

56Frame

56Dialog Box

56Menu

56Base UI Functionality

56UI_Font

57UI_Gradient

58UI_Bitmap

59UI_FileAlias

61UI_TextureBank

62UI_StringDB

63UI_Frame

64UI_DialogBox

65UI_Menu

67Cut-scene Engine

68CutScene Event

69Game Specific UI

69Main/Over-world UI

71Player List

71CCUI_PlayerList

71In a Shop

71CCUI_Shop

72Battle Engine

72UI_CharData

73CCUI_Battle

74Art and Video

74Art

743D Models

74Skeletal Models/Animation

75Video

75Graphics Engine

75All-Purpose

75Overview

76Data Structures

77Animation

83Functions

83GLClass Functions

84Model Functions

85GeomObject Functions

87Arena Functions

87Camera Functions

88CameraScript Functions

89Lighting Functions

89Game-Specific

89Overview

90Data Structures

90Functions

91Experimental - BSP Trees

91Overview

92Artist Instructions

93Sound & Music

93Overview

93Sound Engineering Instructions

94Voices

95Experimental Features

95Skeletal Animation

95How it Works

95Its Risky

96Credits

96Financial Analysis

98Project-Planning Timeline

Game Mechanics

Platform & OS

OS

Windows 9x/NT/2000/ME/XP

Distribution Media

CDROM

Target Platform

Required

PII 450mhz CPU

128MB RAM

16MB OpenGL-compatible 3D video card

700MB free hard drive space

Direct Sound compatible Sound Card

CDROM

Recommended

PIII 600mhz CPU

256MB RAM

32MB OpenGL-compatible 3D video card

700MB free hard drive space

Direct Sound compatible Sound Card

CDROM

File Management

File I/O

All-Purpose

Overview

The All-Purpose File I/O tool serves as a wrapper to abstract the actual work of opening, closing, reading, and writing files. This allows the game to be a little less platform-dependent, as only a few functions would need to be changed to alter the scheme by which files can be read. Only a few functions are actually even necessary to be wrapped at all.

Data Structures

None, though the primary data type is the CC_FILE, a typedef’ed (FILE*)

Functions

OpenCCFile takes the pathname of the file that will be opened/created. The flags are a combination of both whether or not to open it as ASCII or binary and how much read/write access to give it. It returns a handle to the file that has been opened, which will be equal to the null define if it has bad data.
It serves as a wrapper currently for the stdio function fopen.

CC_FILE OpenCCFile(char *pathname, char flags);

CloseCCFile takes a handle to an open file and calls the stdio function fclose to de-allocate resources.

void CloseCCFile(CC_FILE file);

IsEndOfCCFile takes a handle to an open file and returns 1 if the handle is at the end of the file or a 0 if it is not. It is basically a wrapper for feof.

int IsEndOfCCFile(CC_FILE file);

WriteString takes a handle to a file to be written to and a string to write to that file. It will write the string in ASCII. This function serves as a sort of wrapper for the fprintf function.

void WriteString(CC_FILE file, char *string);

ReadString takes a handle to a file and will grab one string at a time out of that file until it finds one that has data that does not begin with the “skip” character which is passed in along with the function. This allows users to add comments to their text files without it disrupting any reading the game will do from that file. It grabs the string with the stdio function fgets.

void ReadString(CC_FILE file, char *string, char skipMe);

WriteData is designed to be used with a binary file, specified by the handle parameter. It can write out data of any size or type, but both need to be specified before it knows how much data to write into the file. As a final parameter it also needs how many elements of the data type are in the array that is passed in to be used for writing. It returns the amount of these “items” that it successfully writes to the file. It is a wrapper for fwrite.

int WriteData(CC_FILE file, void *data, int itemSize, int numItems);

ReadData is designed to be used with a binary file, specified by the handle parameter. It reads data into the buffer passed as a parameter. The user must specify how big each element of the buffer is and how many of these “items” that are to be read into the array. It returns the amount of items successfully read. It is a wrapper for the stdio function fread.

int ReadData(CC_FILE file, void *data, int itemSize, int numItems);

Game-Specific

Overview

The Game-Specific portion of the File I/O is based almost exclusively in the Loading and Saving of the player’s games (because all other objects like Models, Arenas, etc. have their own load functions built in already using the all-purpose File I/O). The player can only save at specific points in the game, so this facilitates the process by limiting how much actually needs to be saved. Also, there is no need to save information such as enemy statistics because this is automatically loaded in when the game begins anyway.

Things that are necessary to save are:

1) All major playable characters’ stats (Level Pts, Strength, HP, etc.)

2) The amount of money accumulated so far

3) The amount of time spent playing the game so far

4) Which Level the characters are currently in (or will return to, at least, from the save area)

5) Any world “flags” that have been set (so the game knows to behave differently in the same areas)

Functions

The SaveGame function is designed to take a pathname to the file that the data will be saved to and a pointer to the game’s MainData structure so that it has access to the data it will be saving. In a very specific order that will be reflected in the LoadGame function, all of the above listed data will be written to the file. This filename is received from the menu which provides the user with the option to save in a certain number of slots and based off of the slot the user chooses it creates a pathname for the file to be saved in. It returns FALSE if it was unable to save, and TRUE if it completed successfully.

BOOL SaveGame(char * path, MainData * pData);

The LoadGame function acts like the SaveGame function in that it takes a path to a saved game file and a pointer to the MainData structure so that it can load the information from the file into the data structure. The filename to look for is given to the function by the menu system where the user would have selected a specific file from among a group of files. It returns FALSE if it was unable to load the file and TRUE if it completed successfully.

BOOL LoadGame(char * path, MainData * pData);

Secure File Management

We do not expect any security problems and therefore are including no secure file management. All game files will be easily accessible and modifiable by players.

Directory Structure

· Crazy Cross – the executable file, documentation (readme.txt)

· Arenas

· Texture

· Model

· Models

· Texture

· Levels

· Collision Maps

· Scripts

· Camera Paths

· Cutscenes

· Images + Sounds

· Particles

· Shadows

· Explosions

· Sparkles

· Option – (config/preferences)

· Characters

· Abilities

· NPCs

· Movies

· Music

· Sounds

· Battle Levels

· Camera Scripts

· Event Scripts

· Summons (Videos)

· UI

· Frame images

· Skins (for skeletal models)

Memory Management

Crazy Cross can be a fairly memory intensive application. Dynamic allocations occur during screen transitions to battles and new over-world levels. The only other time any dynamic allocation will occur is when a player enters or leaves during mid-game. For this reason, a memory tool is not necessary. We will use C ++’s new and delete memory operators for all dynamic memory allocations.

External Code

External API’s

OpenGL 1.2

The OpenGL API will be used to supply vector-based drawing routines in order to create the in-game graphics. It also supplies the transformations necessary to draw objects in three dimensions. If available, OpenGL extensions will also be used to enhance the drawing speed of the game.

DirectSound

The sound engine will indirectly require use of DirectSound for its ease of use and supplied mixing ability. All music and sound objects will have data passed through DirectSound functions before reaching the sound card.

DirectInput

For the final version of the game, the input engine will be altered to make use of DirectInput functions to optimize the speed at which the game receives input and therefore is able to act upon that input.

Xaudio

Xaudio is a freeware MP3 decoder written by Gilles Boccon-Gibod and is freely distributable so long as either the product it is involved in is non-profit or the user signs a freeware license agreement. For quick access to multiple audio file support including MP3 and WAV, the Xaudio library’s functions will provide the lowest level of the audio engine. Xaudio will interface with DirectSound to abstract the hardware level processes of the audio engine. For more information on Xaudio, see the Xaudio web-page at www.xaudio.com. Recently, because of patent issues with the MP3 format, Xaudio had to pull it’s evaluation license from the webpage. If a deal is not struck, we will have to abandon Xaudio for something that supports the Ogg Vorbis sound format.

Win32

Win32 provides low-level interface with the OS including most of the menu functions prior to the actual game. During the menus, the Win32 API will be used to provide the drawing routines and handle the callback system for the buttons and dialog boxes.

FlexPorter

FlexPorter is a free utility plug-in for 3D Studio MAX, designed to easily export a lot of information out of it. It was created by Pierre Terdiman. We will be mainly be using its ability to export Character Studio’s BIPED information for our skeletal animation system. We will be using Version 1.13, the latest version as of January 2002. For more information on FlexPorter, visit the FlexPorter homepage at http://www.codercorner.com/Flexporter.htm .

Graphics

Prior to the current project, Nathan Gray investigated OpenGL and found the NeHe Tutorials (http://nehe.gamedev.net) to be an excellent resource on the subject. These resources are supplied free of charge and any code may be reused however credit must be made to NeHe. Therefore, much of what has been already written of the graphics engine owes greatly to these tutorials.

Already written by Nathan Gray before the current semester but for the current semester’s project is the code to:

· Initialize OpenGL

· Open an OpenGL window

· Initialize and run OpenGL extensions

· Read in a model from a file

· Load model drawing into either vertex arrays or drawing scripts

· Draw a model in 3D space

· Keep track of loading and releasing textures

· Create a camera and move it in the world via direct manipulation or scripting

· Read in an arena object from a file

· Display an arena in 3D space

· Play a windows .AVI file

Specific credit is due to Jeff Molofee for his knowledge and functions to help play an .avi file in OpenGL. Also, Michael Lodge-Paolini wrote the original app that converts model files from the exported 3D Studio Max Ascii file (.ASE) to the Crazy Cross Model File (.CCM), which is what the code that is already written can read in. This app has since been rewritten for compatibility purposes by Nathan Gray.

There is still graphics code yet to be written. Predominantly this involves adding support for skeletal animation and more advanced camera movement/scripting.

Sound/Music

The sound engine was written over the past summer by Nathan Gray to better encapsulate the functionality supplied by the Xaudio API. This includes abstracting out music objects and sound objects, including the differences between the two. While it is not completely finished, the current audio functions can:

· Initialize a soundcard for audio playback

· Create a dynamic number of “audio channels” to mix multiple audio streams

· Automatically loop a song (when it is finished) back to a specified point

· Determine which audio players are already open and automatically play music and sound files in the available players

· Distinguish between a music file and a sound file, thereby intentionally limiting the amount of simultaneous music channels for clarity

· Establish individual song/sound effect properties such as priority

Xaudio supplied a great encapsulation of its API already in the XaudioPlayer class, which creates an invisible window upon instantiation to handle all of the callback messages for the player. Beyond that, some of the Audio code still needs to be written, including anything game-specific. This includes the loading of the audio files and when/where they are played.

Timer

Typically, projects that need to use precise timing use the Windows Multimedia extensions library function timeGetTime() which returns the current time specific to the millisecond. However, code supplied in one NeHe tutorial supplied a method to be even more exact. By using the low-level command QueryPerformanceCounter(), the current time can be retrieved to the nano-second. Nathan Gray neatly wrapped up this functionality into a class with the help of the NeHe tutorial. Nothing left about this needs to be written as it is a tight, concise concept.

User Interface (UI)

Dan Brakeley is bringing over some code written for his semester 6 project, NullSpace. The code allowed basic font display in OpenGL and provided for some basic formatting and organization of text display. However, with Crazy Cross he hopes to re-write the font code to use pre-rendered fonts (to speed things up and drastically reduce the amount of textures and texture memory needed to display fonts). Also, since Crazy Cross relies heavily on text boxes and menus, a lot of new code will have to be added, and some old code re-worked to fit in with the new organization.

Among the code that can be directly re-used is code to load .bmp files into a memory buffer, and code to automatically create an alpha map for bitmaps and make an OpenGL texture out of the bitmap and alpha map. Also, a texture manager to load images, make textures out of them, and keep the same image from being loaded twice can be used with minimal modification.

Coding Guidelines

Overview

For the purpose of readability and neatness, our project will require coding guidelines. These guidelines will give a standard way of writing function declarations, function comment headers, and file layout. The exact way described here is not necessarily the way that it must be done. This just provides an outline of what must be done. Each member on the team may a have a slightly different style.

Here is an example of what the beginning of a file would contain:

/***

 * FILE
fileName.cpp

 *

 * AUTHOR
name

 * CREATED
10/1/01

 * LASTMOD
10/7/01

 *

 * PURPOSE

 *
Description of what’s going on in this file.

 *

 **/

Here is an example of what a function declaration would contain:

//---

// FUNCTION

//
functionName

//

// DESCRIPTION

//
Description of what the function does.

//

// RETURN

//
void

//---

Void functionName(TYPE1 name1, TYPE2 name2)

{
}

Other than above, programmers will be using advanced programming techniques to help the readability. Some examples of these are:

Naming Conventions

Members of a class with a prefix such as m_MemberName.

Class names should begin with a prefix c such as cClassName.

Pointers should have a prefix p such as pPointerName.

Comments

Comments are a big key in readable code. So for our project, we will require that there be comments on almost everything. Declaring a variable? What’s it used for? Calling a function? What for? Etc.

Code Objects

Overview

The code objects that we will be using for Crazy Cross are OpenGL, Window based GDIs, C++’s STL lib, Winsock DLLs, and custom tool libraries.

OpenGL is used for the actual game window. Any OpenGL objects are initialized in GameInit() and deleted in GameTerminate().

The STL lib has a nice link list interface specific to C++. For more information see the STL lib section in External Code.

Our custom tool libraries will make up most of our game engine. Each tool library will try to stay independent from the other libraries. There maybe some small exceptions where this cannot be avoid. Each tool library will have two types of functions, game specific and all-purpose. Game specific functions are functions that are mandatory functions that will only be used for this project. They cannot be ported over to another project because their parameters will have data structures and other Crazy Cross-related objects being passed in. All-purpose code is the exact opposite. All-purpose functions are general code that is portable and the game specific functions depend on them. They do not take any Crazy Cross objects as parameters.

Tool Dependencies

[image: image1.png]Scripting
Engine

Collision

Engine

Graphic

Engine

Modular Tools

Crazy Cross’s engine will be built using our modular tools. This makes function calls in the game loops very high level and easy on the eyes. Another purpose of making modular tools is for easier debugs. Being able to debug a tool separately away from the rest of the engine is very time saving.

Font Tool

The Font Tool will ask for a font name and size, and will generate two textures containing a render of the font in both normal and bold styles, and two binary files containing the locations of each character within each texture.

The Basic Algorithm of the font tool is as follows:

For each style (1 for normal, 1 for bold)

internalX = 0;

internalY = 0;

For each character in the font (0 to 255) {

Make a string with only that character

Call Win32 API to find length (GetTextExtentPoint32)

extentX = font width

extentY = font height

If ((internalX + extentX) > textureWidth) {

internalX = 0;

internalY += font height + 1;

if (internalY > textureHeight)

error: font size too large for texture size

}

left = internalX

top = internalY

right = internalX + extentX

bottom = internal Y + extentY

Render character at internalX, internalY

internalX = internalX + extentX + 1

}

Save BMP of texture

Save binary dump of coordinates

}

When the font tool is done running there will be two binary files, each containing the left, top, right, and bottom coordinates for each of the 256 characters in the font, as well as two corresponding textures with a render of the actual font in both normal and bold face.

Input

Overview

The input tool is code that is responsible for having some type of action occur when the user presses a key. There are four states that a key can be in, pressed, just-pressed, just-released, and not pressed. Pressed indicates that the User has been holding down the key in question. Just-Pressed indicates that the User has started holding down the key. Remember that when a key on the keyboard is tapped, the input devices get hundreds, if not thousands, of “hits” for that key. So if we only wanted one thing to happen when a key is press, we would have to check for the just-pressed state. Just-Released indicates that the User stopped pressing a key and not press simply means the key in question has not be used.

The input tool does not rely on any of the other tools and other tools do not rely on the input tool. Only the game loop needs to check the input to see what the User wants to do in the game.

The input class will need two very important arrays. Both these arrays will be n array of bytes the size of 256. The first array, called keys, will be the current state of all the keys in the keyboard. The second array, called lastKeysState, will hold all previous key states. We need to know the last state a key was in, to decide if a key is being pressed, just-pressed, or just-released.

There will be two input classes. One input class for Direct Input and one class for the Win32 API input. The only difference between these classes is the private data: the Direct Input class will need instances of Direct Input and a keyboard device.

By the final version, we will only be using the Direct Input class. However, since Direct Input makes debugging difficult, we will be sticking with the Win32 API input class until we hit Beta. A define will determine what class will be used, so switching between them will be easy. However, this means that the Win32 API input class must have the same functionality as the Direct Input class. Since the Win32 API input doesn’t have any code associated with the init() and end() functions, it means these functions will be present but empty.

The defines for keys will be standard across both the Direct Input and Win32 API classes. Here are examples of those defines:

#define INPUT_UP

DIK_UP

//VK_UP

#define INPUT_DOWN
IK_DOWN

//VK_DOWN

#define INPUT_LEFT
IK_LEFT

//VK_LEFT

#define INPUT_RIGHT
IK_RIGHT

//VK_RIGHT

#define INPUT_PGUP
IK_PRIOR

//VK_PRIOR

#define INPUT_PGDN
IK_NEXT

//VK_NEXT

#define INPUT_TAB

DIK_TAB

//VK_TAB

#define INPUT_F1

DIK_F1

//VK_F1

#define INPUT_F2

DIK_F2

//VK_F2

#define INPUT_F3

DIK_F3

//VK_F3

#define INPUT_F4

DIK_F4

//VK_F4

#define INPUT_F5

DIK_F5

//VK_F5

#define INPUT_F6

DIK_F6

//VK_F6

#define INPUT_F7

DIK_F7

//VK_F7

#define INPUT_F8

DIK_F8

//VK_F8

#define INPUT_F9

DIK_F9

//VK_F9

#define INPUT_F10

DIK_F10

//VK_F10

#define INPUT_F11

DIK_F11

//VK_F11

#define INPUT_F12

DIK_F12

//VK_F12

#define INPUT_ESC

DIK_ESCAPE

//VK_ESCAPE

#define INPUT_NUMPAD0
DIK_NUMPAD0
//VK_NUMPAD0

#define INPUT_NUMPAD1
DIK_NUMPAD1
//VK_NUMPAD1

#define INPUT_NUMPAD2
DIK_NUMPAD2
//VK_NUMPAD2

#define INPUT_NUMPAD3
DIK_NUMPAD3
//VK_NUMPAD3

#define INPUT_NUMPAD4
DIK_NUMPAD4
//VK_NUMPAD4

#define INPUT_NUMPAD5
DIK_NUMPAD5
//VK_NUMPAD5

#define INPUT_NUMPAD6
DIK_NUMPAD6
//VK_NUMPAD6

#define INPUT_NUMPAD7
DIK_NUMPAD7
//VK_NUMPAD7

#define INPUT_NUMPAD8
DIK_NUMPAD8
//VK_NUMPAD8

#define INPUT_NUMPAD9
DIK_NUMPAD9
//VK_NUMPAD9

#define INPUT_A

DIK_A

//'A'

#define INPUT_B

DIK_B

//'B'

#define INPUT_C

DIK_C

//'C'

#define INPUT_D

DIK_D

//'D'

#define INPUT_E

DIK_E

//'E'

#define INPUT_F

DIK_F

//'F'

#define INPUT_G

DIK_G

//'G'

#define INPUT_H

DIK_H

//'H'

#define INPUT_I

DIK_I

//'I'

#define INPUT_J

DIK_J

//'J'

#define INPUT_K

DIK_K

//'K'

#define INPUT_L

DIK_L

//'L'

#define INPUT_M

DIK_M

//’m'

#define INPUT_N

DIK_N

//'N'

#define INPUT_O

DIK_O

//'O'

#define INPUT_P

DIK_P

//'P'

#define INPUT_Q

DIK_Q

//'Q'

#define INPUT_R

DIK_R

//'R'

#define INPUT_S

DIK_S

//'S'

#define INPUT_T

DIK_T

//'T'

#define INPUT_U

DIK_U

//'U'

#define INPUT_V

DIK_V

//'V'

#define INPUT_W

DIK_W

/'W'

#define INPUT_X

DIK_X

//'X'

#define INPUT_Y

DIK_Y

//'Y'

#define INPUT_Z

DIK_Z

//'Z'

Non-Game Specific

BYTE IsKeyPressed(BYTE key);

IsKeyPressed is a function that checks to see what was the last input for the key in question and returns what state is it in. The function also updates the lastKeyState.

Although this function is very simple, it’s very important. This function will be the heart of the input tool. The only data that IsKeyPressed needs is a BYTE which represents a key on the keyboard. The array lastKeyState will be updated to pressed for that key if the last key state was just-pressed. The function will return one of the four states a key could be in, pressed, just-pressed, just-released, and not pressed.

void Update();

Update goes through the array of keys and checks the current state of each key. Depending on what the key’s last state was, will decide what the current state will be. For example, if a key’s last state was pressed, and updated checks the key and sees that it is not longer being pressed, it will change the last key state to being just released. The next time Update is called, it sees that the key is still not being pressed so it will change the last key state to being not pressed. Update does not need any data since everything it needs is internal due to C++.

int Init(HINSTANCE hInstance, HWND hWnd);

Init sets up the direct input devices. It needs the hInstance and hWnd of the window to create the direct input EX and to set the cooperative level. Init will return false if any of the direct x objects cannot be create thus failing the initialization. Init will return true if everything gets create correctly. The objects that need to be created are, the direct input, keyboard device, keyboard data format, setting the cooperative level, and acquiring the keyboard device.

void End();

The end function will free up all the direct input objects that Init creates. No data needs to be passed in and nothing is returned.

Controls

To allow the user an easy way to change the controls of the game, a internal array will be kept to use as a reference to what keys are assigned to what action. When the user changes the controls, the array will be updated to the new controls by replacing the old keys.

There are seven actions for CC Up, Down, Left, Right, Action, Cancel, and Menu. So, there must be an array of seven integers to represent this. E.g.

whichkeys = {VK_UP,VK_DOWN,VK_LEFT,VK_RIGHT,VK_SPACE,VK_CTRL,VK_M}

void Input::DefineKeys(int numkeys, int * whichkeys);

DefineKeys() will make an array, the size of numkeys, that will define what keys are associated to what actions. If the controls are ever needed to be changed, one could call this function to make a new key array. The first parameter, numkeys, is the number of keys that need to be use. For Crazy Cross that number is seven. The second parameter, whichkeys, is an array of integers to store the key codes.

 void Input::DefineKeys(int numkeys, int * whichkeys)

 {

int internalarray = new int[numkeys];

memcpy(internalarray, whichkeys, sizeof(int) * numkeys);

 }

bool Input::IsKeyPressed(int cc_key);

IsKeyPressed() is a wrapper function that’ll return true if the given key is held down, or false if it isn’t. The function will call the internal input function IsKeyPressed and find what state that key is in. The only parameter is an int that represents a key.

 bool Input::IsKeyPressed(int cc_key)

 {

if(iIsKeyPressed(internalarray[cc_key]) == INPUT_PRESSED)

return true;

else

return false;

 }

bool Input::IsKeyTriggered(int cc_key);

IsKeyTriggered() is a wrapper function that’ll return true if a key is just pressed, or false if it isn’t. The function will call the internal input function IsKeyPressed and find what state that key is in. The only parameter is an int that represents a key.

bool Input::IsKeyTriggered(int cc_key)

{

if(iIsKeyPressed(internalarray[cc_key]) == INPUT_JUST_PRESSED)

return true;

else

return false;

}

bool Input::HasInputChangedSinceLastCall();

HasInputChangedSinceLastCall() is a wrapper function that will check of any keys have been just been pressed or have just been released. If there has been a change, the function will return true. If there is not change, the function will return false.

bool Input::HasInputChangedSinceLastCall()

{

while(search through all keys)

{

if(IsKeyPressed(internalarray[key]) == INPUT_JUST_PRESSED))

return true;

if(IsKeyPressed(internalarray[key]) == INPUT_JUST_RELEASED))

return true;

move to next key in the list;

}

return false;

}

Game Specific

void HandleInputOverWorld();

HandleInputOverWorld() will check the input and will do the appropriate action.

void HandleInputOverWorld()

{

if(IsKeyPress(upArrow) == JUST_PRESSED)

MoveLouUP();

if(IsKeyPress(upArrow) == PRESSED)

MoveLouUP();

:

:

}

void HandleInputBattle();

HandleInputBattle() will check the input and will do the appropriate action.

void HandleInputBattle()

{

if(IsKeyPress(upArrow) == JUST_PRESSED)

MoveCursorUP();

if(IsKeyPress(upArrow) == PRESSED)

MoveCursorUP();

:

:

}

void HandleInputMenu();

HandleInputMenu() will check the input and will do the appropriate action.

void HandleInputMenu()

{

if(IsKeyPress(upArrow) == JUST_PRESSED)

MoveCursorUP();

if(IsKeyPress(upArrow) == PRESSED)

MoveCursorUP();

:

:

}

Audio

All-Purpose

Overview

The All-Purpose portion of the Audio Engine exists to provide a simple way to play Music files and Sound Files (which can be in either MP3 or WAV format). To facilitate this, the audio engine provides an interface to the Xaudio API. The development kit for Xaudio provided a class called the XaudioPlayer that encapsulates most of what Xaudio has to offer. In the XaudioPlayer, an invisible window to handle player callback messages is automatically created, placed in a separate asynchronous thread, and destroyed at the proper times, keeping that nasty bit of code hidden from the user. Instead it reveals a number of virtual functions that the user is allowed to define personally to handle callback messages.

This is where the AudioPlayer class steps in. It is designed to further abstract the XaudioPlayer by handling the callback message “notify player state” so that the song knows when it ends and therefore when to loop. This looping functionality needs only to be available to Music files, a fact that gets enforced by later classes. The cornerstone of the Audio Engine is the AudioClass, which manages an array of these AudioPlayers so that multiple channels of audio may be played at once. Due to Xaudio’s inherent use of DirectSound, all of these channels are automatically mixed together.

Finally, at the highest level, there are the Music and SoundEffect classes themselves, which are each linked to an AudioClass then contain other pieces of information such as the pathnames to the audio files that will be played. Because the audio files will be played out of files, the Audio Engine needs access to the File I/O handler, but other than that it is completely independent of all other tools.

Data Structures

The AudioPlayer class is the encapsulated XaudioPlayer that adds the extra feature of automatically repeating songs and keeping track of whether or not it is currently in use. It needs variables to know if it is currently playing (set during the Play function and cleared when it reaches the end of file or a Stop is called), what the offset is (i.e. where to play from in the file once it reaches the end and it loops) and whether or not it should repeat at the end of a file. To accomplish this, it defines a function that directly applies to the base XaudioPlayer class, the HandleStateMessage, which repeats a song from the repeat point on the state “end of file”. The AudioPlayer is what ultimately needs access to the File I/O handler as it needs to confirm whether or not a file exists.

class AudioPlayer : public XaudioPlayer

{

bool repeat;

bool inuse;

int offset;

public:

//Function to handle PlayerState callback messages

//Function to play/stop an audio file

//Access function to check if a player is currently in use

};
The AudioClass contains an array of several AudioPlayers and an integer to keep track of how many were dynamically allocated. There are two allocations that must be performed: one for setting how many players there are, and then one for each player itself. The AudioClass is self-terminating as all the free commands are located in its destructor. Whenever a song is called to be played, it is run through the AudioClass to find a player that doesn’t currently have audio playing and plays it from that AudioPlayer (consequently setting that player to “active” until the song/sound effect is finished). It is important to note that it is assumed music files will never need to overlap, therefore to insure maximum efficiency, the first channel of the ppPlayers is reserved for music. If any new music file is played, it will replace whatever is playing in the first index, while sound effects are relegated out to how ever many players remain (the number of which is specified upon the AudioClass’s initialization).

class AudioClass
{

AudioPlayer **ppPlayer;

int numPlayers;

public:

//Functions to initialize, play and stop audio

//Access function to get access to a player that has nothing playing

};

A Song class is an encapsulation of what a song is. First of all it has a pathname of the song file and a name to be associated with the song (if one ever needs to display that). Next it has whether or not the song is supposed to be repeated and, if it is, where to repeat it from. Specifically, this repeat point is a number out of 1000 representing a percentage forward into the song to “skip over.” Finally, it needs access to an initialized AudioClass from which to actually play itself, which must be set during the Song’s creation.

class Song
{

char

name[SONG_NAME_LEN];

char

path[SONG_PATH_LEN];

bool

repeat;

int

repeatPoint;

AudioClass
*ac;

public:

//Access functions to change the song’s pathname

//Function to “create” the song

//Function to play/stop the song

};

A SoundEffect class is an encapsulation of what a sound effect is. First of all it has a pathname of the sound effect file. Next it has a value indicating the priority of the sound effect. This is set up so that if there is a sound effect that absolutely must be heard and there are no players available, it will stop one of those players and play itself. Finally, it needs access to an initialized AudioClass from which to actually play itself, which must be set during the SoundEffect’s creation.

class SoundEffect
{

char

path[SONG_PATH_LEN];

int

priority;

AudioClass
*ac;

public:

//Access functions to change the sound effect’s pathname

//Function to “create” the sound effect

//Function to play/stop the sound effect
};

Functions

AudioPlayer Functions

In the AudioPlayer constructor, we need to pass a handle to the current application instance to the constructor of the XaudioPlayer, which will use it to create an invisible, internal window to handle its own messages.

AudioPlayer::AudioPlayer(HINSTANCE hInst);

The XaudioPlayer supplies many virtual void functions, including OnNotifyPlayerState, so by defining the function we can handle any of its callback messages. So, if we get any important state messages, here is where they are handled. We are, in fact, only interested in one possible state, that of the “end of file,” which is when we set the file to loop if its looping variable is set to true.

void AudioPlayer::OnNotifyPlayerState(XA_PlayerState state);

PlayAudio takes a pathname of a file and, using the File I/O, checks to make sure the file actually exists. If so, it will initialize the variables for looping and the offset upon repeat. Then it calls the XaudioPlayer class’s functions for loading input and playing the audio. Also sets the isPlaying variable to true if it begins to successfully play.

void AudioPlayer::PlayAudio(char *path, bool loop=false, int off=0);

StopAudio halts any audio currently playing in the AudioPlayer by calling the XaudioPlayer’s stop and closeaudio functions. Also sets the isPlaying variable to false.

void AudioPlayer::StopAudio();

This function serves as an access function to the isPlaying variable and returns whether or not the audio currently is in use.
bool AudioPlayer::IsPlaying();

AudioClass Functions

The Init function takes a handle to the program instance that it will pass to the constructors of each AudioPlayer it creates. It also needs a handle to a window that gets priority so that it can call an Xaudio function to associate a player’s priority with a window. Finally, it needs a number of channels to dynamically allocate AudioPlayers in an array. This number must be at least one for music to play, and more for there to be sound.

void AudioClass::Init(HINSTANCE hInst, HWND hwnd, int numChannels);

Play indexes into its array of AudioPlayers by the specified index variable, then calls the PlayAudio function of the specified player. The remaining parameters are the parameters that will also need to be passed into the play audio function, including the pathname of the music file, whether or not it loops, and the point to loop over from.

void AudioClass::Play(int whichPlayer, char *path, bool loop=false, int off=0);

Stop indexes into the array of AudioPlayers and calls the StopAudio function of that player.

void AudioClass::Stop(int whichPlayer);

GetOpenPlayer returns the index of the first player it finds in the array that isn't playing anything. If the parameter is specified to true, then it will include the first AudioPlayer in the search for an open player, but this is not recommended as the first AudioPlayer is reserved for music only.

int AudioClass::GetOpenPlayer(bool includeZero=false);

StopAll runs through the array of AudioPlayers calls the StopAudio function for each player.

void AudioClass::StopAll();

Song Functions

The Create function of the Song class associates the song with an instantiated AudioClass so that it can play sound when it is told to later. It also gives a string for the name, the pathname for the mp3 or wav file, whether or not the song will repeat, and if so what point to repeat the song from (a value from 0 to 1000). This function must be called before the Play will work.

void Song::Create(AudioClass *audio, char *n, char *p, int off, bool loop=1);

If a song is already created and its properties are set, ChangePath is available to redirect where the Song will look for its file.

void Song::ChangePath(char *p);

Play will, if the audio class associated with the song is valid, pass the song’s information off to the first player (player 0) of the AudioClass to let it handle the playing from there.

void Song::Play();

Stop will, if the audio class associated with the song is valid, stop the audio that is playing in the first player (player 0) of the AudioClass.

void Song::Stop();

SoundEffect Functions

The Create function of the SoundEffect class associates the sound effect with an instantiated AudioClass so that it can play sound when it is told to later. It also gives a pathname for the mp3 or wav file and a priority value which, if set to 1, will guarantee that the audio gets played even if all the audio players are currently in use. This function must be called before the Play will work.

void SoundEffect::Create(AudioClass *aclass, char *p, int priorityvalue=0);

If a sound effect is already created and its properties are set, ChangePath is available to redirect where the SoundEffect will look for its file.

void SoundEffect::ChangePath(char *p);

GetPath is a data access function that returns the path currently associated with the sound effect.

char * SoundEffect::GetPath();

Play will, if the audio class associated with the song is valid, pass the song’s information off to the first open player of the AudioClass to let it handle the playing from there. If the sound effect’s priority is set to true, then if it does not find an open player it will play out of player 1 regardless. Also, since sound effects can pan to the left and to the right there is a “pan value” parameter that is from –1.0 to 1.0 and represents the bias to left and right speakers respectively. This variable needs to be calculated beforehand so the sound comes from the proper direction (or can just be set to 0.0 to play equally in both speakers).

void SoundEffect::Play(float panvalue=0.0);

Game-Specific

Overview

In the game, different tools will call into the sound effect functions when they need them. These sounds are loaded in as strings from a file and are “built” during the load function, which includes associating them with the AudioClass. Therefore it is not the responsibility of the game-specific audio engine to further abstract the process. Along the same lines, the AudioClass’s initialization function already exposes enough functionality and does not need a wrapper that is game-specific.

The only game-specific functionality that is necessary is the loading/creation of the game’s songs, and how they are played. By interfacing this tool with the File I/O tool, the function can read in an array of songs from a text file and play them by index value instead of needing to rely on the actual Song object.

Data Structures

The mainData struct contains the Song array, which is loaded in from a file and can be indexed later to play the individual music files. There also is a variable for how many songs are loaded in so that the song array is never over-indexed. For more information on what else the mainData structure contains, see the Game Object Data section of this document.

struct mainData
{

//...other variables...

Song
*songArray;

//the array of song files that play music

int
numSongs;

//the number of songs to choose from

//...other variables...

}

Functions

LoadSongList takes a pathname to a configuration file and, using the File I/O handler, loads in a number of pathnames equal to the number specified at the top of the file. It then allocates the proper number of Songs in the song array. Finally, it associates them with the instantiated AudioClass pointer that was also passed in. The function returns the number of properly allocated Song files.

int LoadSongList(char * configPath, AudioClass *ac, Song **songArray);

EmptySongList takes a pointer to an allocated array of Songs and the number of those songs. It runs through each one in turn, makes sure the audio is not playing, and then deallocates the array, setting the songArray to NULL when it is finished.

void EmptySongList(Song **songArray, int numSongs);

PlaySong takes an array of songs and an index into those songs to the one that the user wants to play. This index must not be longer than the array, or it will cause errors. This index value will typically be associated with a define for either MENU_MUSIC or GAME_MUSIC so that the proper music file can be played when it’s supposed to and it looks intuitive to the programmer.

void PlaySong(Song *songArray, int whichSong);

Special Effects

The Special Effects will rely partially on a particle engine. Most special effects will be done with this engine and allow everything from explosions and smoke to radial explosions and blood particles. All particles will be placed in a list with data for location, direction and what graphic to draw.

Additional options for special effects aside from the particle engine will possibly include a blurring effect or perhaps a shadowing effect where you can see a character’s previous frames of animation behind him as he moves. The Battle engine will indirectly call all these special effects when a move is made that requires special effects. The only special effect that will exist in the over-world portion of the game will be “glass breaking” effect that leads the player into the battle engine. This effect is already documented and implemented.

To implement a blurring effect, we could use an OpenGl function to grab a portion of the screen and put it onto a texture and then alpha blend that onto the current frame. This could be a used in a number of ways to create shadowy motion blur effects or just wispy blurring effects. The details of this system can be flushed out after we finish our Alpha and need to add these additional special effects at that stage in the game’s development. Otherwise the particle system should be sufficient to supply a good variety of special effects.

The special effects tool’s draw function will be called by the game specific graphics function to draw all images. The original design for the special effects engine is by CJ Clark, who worked on it for the Digipen game project “NullSpace”.

September 2002 Update: The original design mentioned here is no longer going to be used. Instead a particle engine as described below will be used. The blurring effect finally being implemented is mentioned elsewhere in the T.D.D.

The diagram above shows the overview of the particle engine. This is very similar to the design mentioned in the Gamasutra article “Building an advanced particle system” by John van der Burg.

The particles classes at the bottom will contain information about each particle’s position, old position, whether its alive, it’s energy, it’s velocity, its color and its size. These in turn will be governed by a Particle Systems class that will include many different type of particle systems, including Sparks, Smoke, FlareLight, BitmapExplosion, Bubbles, Snow, Rain, Blood, and possibly more.

A Particle manager in turn will manage these particle systems. This particle manager will be responsible for memory allocation and updating of the different particle systems. Hence, the main game engine will interact with the Particle manager. The particle manager will create the different Particle systems as needed, and will update them on each game loop as necessary.

Below are the structures planned for these three classes. These are still subject to change depending on which ones we decide we need. For example, it might turn out that for the particles we want in the game, we don’t need to store the old position for each particle after all. In that case, that will be taken out. However, these provide a good outline for the kind of information we’ll store, and the functions we’ll need.

The specific Particle System Classes like PS_Smoke will contain more specific functions necessary for that class.

Structures

// Particle system types

enum ParticleSystemType
{

PS_Manual

= 0,

PS_Sparks,

PS_Smoke,

PS_FlareLight,

PS_BitmapExplosion,

PS_Bubbles,

PS_Snow,

PS_Rain,

PS_Blood,

PS_HitEffect,

};

// a particle

class CC_Particle
{

public:

// constructor and destructor (empty for speed)

CC_Particle()
{ }

~CC_Particle() { }

// public attributes

bool

alive;

Vector3D

position;

Vector3D

oldPos;

Vector3D

velocity;

RGBAColor
color;

int

energy;

float

size;

};

// particle system class

class CC_ParticleSystem
{

friend class CC_Particle;

friend class CC_ParticleMgr;

public:

char *

texturename;

BlendMode

blendMode;

ParticleSystemType

systemType;

// public members

Array<O3D_Particle>

particles;

Array<O3D_ParticleShape>
shapes;

int

nrAlive;

// alive particles

BoundingBox3

boundingBox;

// main functions

virtual void

SetParticleDefaults(CC_Particle& p);

virtual bool

TransformSystem();

virtual void

ProcessAI();

virtual void

FillBuckets();

virtual void

SetupShape(int nr);

virtual void

SetDefaults()

};

// particle manager

class CC_ParticleMgr
{

friend class CC_ParticleSystem;

friend class CC_Particle;

private:

// a particle bucket

struct Bucket

{

BlendMode blendMode;

Array<CC_ParticleShape*> polys;

ParticleSystemType systemType;

};

// private attributes

Array<CC_ParticleSystem*> systems;
// the particle systems

String

version;

// manager version

pVertexArray

verts;

// vertex array

IndexArray

vertsIndex;

// index array

Array<Bucket>
buckets;

// normal buckets

public:

// constructor and destructor

CC_ParticleMgr()
{ Init(); }

~CC_ParticleMgr()
{ Exit(); }

// main functions

void
Init();
// initialize, called by constructor

void
Exit();
// release all allocated memory and delete all systems etc, called by destructor

void
ProcessHierarchy();
// process hierarchy

void
Update();

// transform (update) all systems

void
ProcessAI();

// update stuff

void
FillBuckets();

// fill render buckets

void
DeleteBuckets();
// delete all buckets (free memory)

void
RemoveSystem(CC_ParticleSystem *sys);
// removes a system

};

In addition to these, there will also be specific Particle System classes for each of the enumerated types, like PS_Smoke, PS_Blood, etc.

Control Loop

Crazy Cross is centered around three major game loops: the Title Menu Loop, the Over-world Engine Loop, and the Battle Engine Loop. All three look similar, but ultimately have different function calls within them. Furthermore, while the Title Menu is at the highest level, the Over-world Loop is initiated from within it and then the Battle Loop is initiated within the Over-world Loop.

The basic outline of each loop is:

· Initialization

· The Loop itself (which consists of checking for windows messages, drawing, and updating)

· Termination

Control Loop Functions

The following is a rough diagram as to the general game loop:

GameLoop(mainData * theWorld)

{

GameInit(theWorld);

while(1)

{

if(PeekMessage(…))

{


~~~~~ (handle message)

}

else

{


if(!drawGame)


{



return error; //draw failed


}


else

{


//waste unnecessary cycles here


UpdateInput();


ret = HandleInput();


//if we are in a battle then we UpdateBattle here


CheckScripts();


if(ret == EXIT)



break;

}


}

}


GameTerminate();

}

By this point in the code, the MainData object is assumed to already have been initialized and allocated at the beginning of the game.  The first loop of the game, the “Main Loop” which only consists of updating the main menu includes the initialization of the MainData object in its Init function and the freeing of all the data in the Termination function.

The following is a more specific example of what the Main Initialization function features

MainInit(mainData * theWorld)

{


allocate theWorld;


initopenGl();


createGLwindow();


associateGLextensions();


InitAudio(theWorld.GLinstance);


InitInput();

}

The MainTermination function closes and frees up any memory allocated by the functions in MainInit().   The main data is needed so that it can be properly freed.

MainTermination(mainData *theWorld)

{


EndInput();


CloseAudio();


GlTerminate();


De-allocate theWorld

}

The OverworldInit function loads in a single character representing the main character whom the players uses to walk around as well as the level and NPC characters that appear in a given level.

OverworldInit(mainData * theWorld)

{


start playing over-world theme


load the main character model


load all NPC models


load the current arena


set up the camera


fade the level in

}

The OverworldTermination function just undoes all of the loading from the init function

OverworldTermination(mainData * theWorld)

{


stop playing over-world theme


unload the current arena


unload all NPC models


unload the main character model

}

The BattleInitialization function loads in all necessary graphics for the battle and starts the camera moving on a proper path to begin the battle. 

BattleInit(mainData * theWorld)

{


start playing battle theme


play battle transition animation


load the player character models


load the enemy character models


load the current arena


set up the camera on a scripted path


fade the level in

}

The BattleTermination function undoes all of the loading that the init function did, as well as resolving other aspects of the battle such as doling out experience to the players and the exit screen. 

BattleTermination(mainData * theWorld)

{


stop playing battle theme


start playing victory theme


run victory camera animation


go to victory screen, give experience


fade out to black


unload the current arena


unload the player character models


unload the enemy character models

}

Game Object Data

Data Types

typedef GLfloat Point3D[3];

typedef unsigned int Triangle[3];

typedef GLfloat GLPoint2D[2];

typedef GLfloat GLPoint3D[3];

typedef GLuint GLInt3D[3];

typedef FILE *CC_FILE;

Data Structures

Structures

struct MainData
{


Input



input;
// Main Input Object, the "Input Class"


GLClass


glObject;// Main Graphics Object, the "OpenGL Class"


ParticleEngine
particle;// The Particle Engine! (can be modified)


AudioClass

audio;
// to be passed into audio functions


SongBook


songs;
// list of songs for playing


SFXEngine

sfx;

// group of sound effects that can be played


Party



charParty;
//pointers to all the character members


EnemyParty

enemyParty;
//pointers to all enemies currently in it


CrazyCharacter
characters[MAX_CHARACTERS];//array of all characters 


CrazyEnemy

enemies[MAX_ENEMIES];
//array of all monsters

}; struct Vertex
{


GLfloat v[3]; //point of vertex in model coordinates

};

struct Frame
{


GLPoint3D *vertexArray;


GLPoint3D *faceNormals;

};


struct Face
{


GLuint tIndex;//index into the model's texture list of the texture to use


TexPoint texCoords[3]; //the texture coordinates for the face


Triangle vIndex; //index into current frame's vertex array (the triangle)

};

Classes

Inheritance Charts

Classes derived from other classes are depicted as containing that class.

CRAZYCHARACTER derived from BASECHARACTER derived from GEOMOBJ




Class Definitions

Engines

class Crazy
{


MainData *pData;

Public:


//functions for main init, terminate, and main loop

};

class OverworldEngine
{

private:


CrazyCharacter

MainCharacter;
// For drawing the main model


list<CrazyNPC>

NPCs;


// All NPCs currently active


MainData
*pData;
// Necessary for access to all pertinent information


Level
*level;

// The current Level to draw, check scripts, etc.


Song
*theme;

// Pointer to the current level music

public:


//member functions including the over-world loop, init, and terminate

};

class BattleEngine
{

private:


MainData
*pData;
// Necessary for access to all pertinent information








// (contains pointers to character and enemy lists)


BattleLevel
*level;
// The current Level to draw, check scripts, etc.









// (has pointers to all the music to be played)


list<BattleActions> battleQueue;

public:


//member functions including the battle loop, init, and terminate

};

Game-Specific

class BaseCharacter : public GeomObj

{


//variables for stats including hp, max hp, ap, max ap, speed, etc.


//variable for experience and for “level”


//variables for keeping track of animations and position of character


//variable keeping track of what types of attacks character can do


//sound effect variables

public:


//member variable access functions


//functions to load and free the character and/or his model


//functions to animate the character in battle and do damage


//function to initialize the sound objects

};

class CrazyCharacter : public BaseCharacter

{ 


char

*Name;


int

ID;

//party id #


int

m_pos;
//position within the party


int

distributableLvlPts;


int

summonIdx;


int

canUseSummon;

public:


//variable access functions


void Attack(int whichEnemy);


void DrawCharacter();

};

class CrazyEnemy : public BaseCharacter

{ 


int

stealableItemIndex;


int

m_pos;

public:


void Attack(int whichCharacter);


void DrawEnemy();

};

class CrazyNPC : public GeomObj

{


//variable for what they say when they are spoken to

public:


//functions for updating random movement and talking to character


//function to draw the NPC

};

class Party
{ 


//the list of non used characters in the party


list<CrazyCharacter*>
mMemberList;



//the list of characters that are being used in the party


list<CrazyCharacter*>
mActiveList;



//the max amount of active characters allowed in the Party


int






mMaxActMembers;


//the list of the active characters in the party that had to be //deactivated for a special battle and then reactivated after battle


list<CrazyCharacter*>
mDeactiveList;

public:


//member access functions


//functions to deactivate/activate members of the party for battle

};

class EnemyParty
{ 


list<CrazyEnemy*> mMemberList;

public:


int JoinParty(CrazyEnemy *NewMem);


void EmptyParty();


list<CrazyEnemy*> GetMemberList();

};

class Level
{

private:


Arena overworldArena;


BattleLevel battleArena;


CollisionMap c_map;


int songIndex;


Script scripts;


int randomBattleType;


CamScriptObj cameraScripting;

public:

//functions to load/initialize, check for a possible collision given a 

//point, run the scripting engine, run camera movement, play the 

//correct song given a “song book” object, draw the level, and to 

//initiate battles.

};

class BattleLevel
{

private:


Arena battleArena;


CamScript battleCamScripts;


BattleScript battleScript;


Song * battleTheme, * victoryTheme, * failureTheme;


int whichTransition;

public:

//functions to load/initialize, play the proper theme song, run the 

//proper camera scripts, run any existing battle scripts if they exist, 

//and draw the level.

};

Audio

class AudioPlayer : public XaudioPlayer

{


bool repeat;


bool inuse;


int  offset;

public:


//Function to handle PlayerState callback messages


//Function to play/stop an audio file


//Access function to check if a player is currently in use

};

class AudioClass
{


AudioPlayer **ppPlayer;


int numPlayers;

public:


//Functions to initialize, play and stop audio


//Access function to get access to a player that has nothing playing

};

class Song
{


char 

name[SONG_NAME_LEN];


char 

path[SONG_PATH_LEN];


bool 

repeat;


int
 
repeatPoint;


AudioClass 
*ac;

public:


//Access functions to change the song’s pathname


//Function to “create” the song


//Function to play/stop the song

};

class SoundEffect
{


char 

path[SONG_PATH_LEN];


int 

priority;


AudioClass 
*ac;

public: 


//Access functions to change the sound effect’s pathname


//Function to “create” the sound effect


//Function to play/stop the sound effect
};

Scripting Engine

class Trigger
{


RECT location;


list<TriggerCondition> TC;


list<TriggerEffect> TE;

public:


//access functions to add and remove triggers from the list


int CheckConditions();


int Activate();

};


class Script
{


//contains a number of related Triggers specific to a certain Level


list<Trigger> triggers;

public:


//load in the single script from a text file


int Load();


//run through all triggers in the list, checking conditions



int Run();

};

Graphics

class GLClass
{

private:


HDC


hDC;


// Private GDI Device Context


HGLRC


hRC;


// Permanent Rendering Context


HWND


hWnd;


// Holds Our Window Handle


HINSTANCE
hInstance;
// Holds The Instance Of The Application


DEVMODE

m_DMsaved;
// The current statistics of the window 










// (size, bit depth, etc.)


int


m_width;

// The window's current width


int


m_height;
// The window's current height


bool


fullscreen;
// Fullscreen Flag


bool


active;

// Window Active Flag (Initially “true”)

public:


// Variable Access Functions for Fullscreen, Size, Active


// Functions to Initialize OpenGL and Create/Destroy an OpenGL window


// Functions to Resize the window

};

class
GeomObj
{

private:


POINT3D 
position;


POINT3D 
rotation;


float

scale;


Model 
*pModel;



AnimData
animation;

public:


//functions to access current animation, draw object, etc.

};

class Arena
{


int

numTextures;

//to keep track of texture number


GLuint
*texture;

//Storage For our Textures


Face

*faceArray;

//Face info temporarily goes here


Vertex

*vertexArray;

//Vertex info temporarily goes here


GLuint

dispList;

//An index to an OpenGL display list


bool


listExists;

//Whether or not the list is made yet


//Private function to create a Display list for drawing

public:


//Functions for loading, emptying, and drawing

};

class Camera 

{

private:


//variables to keep track of proper linear interpolation


int
timeLeftInMove;


int 
timeLastMoved;


//the camera position that our camera may be transitioning too


CamPosObj m_cDestPos;


//the position our camera is currently at (and displays from)


CamPosObj m_cPos;


//our camera script list (loads up a new script when old one finishes)


list<CamScriptObj> m_ScriptList;


//variable to keep track of being paused or not


bool isPaused;

public:


//access function to know whether or not the camera is currently paused


//access functions to get at our camera's position


//access functions to set our camera's position


//Some quick camera interaction functions


//Function that updates the interpolation of the camera


//Function that takes a position to have the camera “look at”

};

Data Flow

Crazy Cross features a number of situations where data is dynamically loaded and freed.  The beginning of the game is where all of the game’s modules are initialized and character templates are loaded.  However, because so few graphics are loaded in yet, the most memory intensive part of the application has not been reached.  As the game is exited, all remaining memory will be freed, but since each individual section of the game is supposed to take care of their own memory, this means it should not need to free much.

When the player enters the game, the first memory intensive part takes place where the models and arenas for the level is loaded.  Any subsequent change in levels will result in dumping the memory of the previous level and loading in new arena files and any characters other than the main character (who remains constant between the changing areas).

The next memory intensive location in the game is when a player enters a battle sequence.  The game needs to perform a screen transition to black to that everything can be loaded without giving an awkward appearance.  All player and enemy models that will make appearances in a given battle are loaded into memory (with their textures being placed in video memory for quick OpenGL access) as well as the battle arena itself.  Note that this is being loaded on top of the level’s information.  If that becomes an issue, all graphical data from the level must be unloaded before the battle can begin.

The final place where memory is swapped around in massive quantities is more of a wildcard.  Cut-scenes can feature a large number of stills or a small number of stills as well as video.  Any video that is played will be streamed to cut down on the memory usage, but the still frames can all be loaded in at once then individually assigned to textures to increase speed at which they can be loaded.

Game Physics and Statistics

Movement

Movement is done only in the Over world and is in real-time.  The player can move the party, depicted as a single character, forward, backward, and rotate them in both directions.  There will be no running or jumping, only walking.  The player controls the character’s movement using four keyboard keys, such as the directional buttons, or W, A, S, and D.

Rotating and translating the character model achieves this movement.  The character will also be animated as they walk through the use of skeletal key-frame animation.  Skeletal animation is covered in more detail in the Art and Video section of the TDD.

Collision

The only collisions possible are with the party and the level, such as walls or trigger points.  Trigger points will activate scripted events.

Collision will be handled by a two-part system.  When a character attempts to move, it is first checked against a text file containing collision information.  If that check determines the move is valid, then a second check is made against the level polygons.  The character is treated as a sphere for this purpose, so the character might graphically pass a bit through the level, but the character will not ever be able to move entirely through the level polygons.

The text file collision information will be grid based and include height information.  The height information will be used to position characters at the proper height as they walk up ramps and stairs.  The grid units will vary in size for each level.  These grids will be hand made by looking at an overhead shot of a level with a grid overlay and noting which grid spaces are navigable.  See example below:

[image: image2.png]Hospital Room Type 2

s Room)

(Used for Lou




Collision File Specification

The first line of a collision file must start with “LEVEL ID” followed by a unique number that identifies this level from other levels.  “WIDTH” is the second line, followed by the number of grid spaces wide the level is.  Then “HEIGHT” on the third line, with the number of grid spaces high the level is.

Following this information is the actual collision information.  It is formatted in as many columns as WIDTH indicated, and as many rows as HEIGHT indicated.

Each pair of letters and numbers represents a grid space.  An H indicated the space is navigable and the following letter indicated height.  An XX represents a non-navigable space, such as a wall or large object.  A T indicates a trigger point and the following number is the trigger’s ID.  This ID is used to identify the associated script that is triggered upon collision with this grid space.

Statistics

Party Statistics

The party will have the following statistics:

· Gol (money) – the monetary unit for our world.  It is gained from winning battles.  Gol is used to purchase items from vendors and stores.

· Time (real-time spent playing the game) – It serves no other purpose than to let the player know how much time they’ve spent on Crazy Cross.

The party will have a list of current party members.  It will also have an inventory of items.

Character Statistics

Each character will have the following statistics:

· H.P. (Hit Points) – how many hits a character can take before going unconscious

· STR (Strength) – a modifier to damage dealt (measured in hits)

· DEF (Defense) – a modifier to damage received (measured in hits)

· SPD (Speed) – determines initiative and how often a character takes a turn

· A.P. (Ability Points) – used to do abilities

Each character will also have lists of Abilities and Summons.  Abilities are special moves that have unique effects in battle.  Summons are cell phone numbers of characters who can be called upon to help out in battle.

Item Statistics

Items include: weapons, armor, and others.  Other items have unique abilities, such as smelling salts that revive unconscious characters.  Weapons and armor can have one or more modifiers to STR, DEF, and SPD.

Weapon Statistics

· STR (Strength) – a modifier to strength 

· DEF (Defense) – a modifier to damage received (measured in hits)

· SPD (Speed) – a modifier to speed

Armor Statistics

· STR (Strength) – a modifier to strength

· DEF (Defense) – a modifier to damage received (measured in hits)

· SPD (Speed) – a modifier to speed

Battle Equations

Battle Equations use the character’s statistics after any modifications, such as those given from weapons, armor, and other items.  The turn sequence for battles is based of off each character’s SPD.  The character with the highest SPD goes first.  This is accomplished by using the following equation:

Initiative = ( 1 / SPD ) x number of turns taken

This is done for each character and whoever has the lowest resulting initiative goes next.  Whether a character hits successfully is calculated by using the following equation:

Chance to Hit = ( attacker’s SPD - ( ( defender’s SPD + defender’s DEF ) / 2 ) + 80 ) / 100

This gives the percentage chance to hit.  A random number generator is used to determine if the attacker successfully hits.  If the attack is unsuccessful, nothing else is calculated.  If the attack is a success, then damage is calculated, and/or other effects from the attack are applied.

Damage is calculated by using the following equation:

Damage = attacker’s STR x 5 – defender’s DEF

Note:  Damage should never be negative, even if the defender’s DEF is more than five times the attacker’s STR.

Game-Specific Code

Artificial Intelligence

Overview

There are two parts to the A.I., the aggression system that helps the monsters choose who their next target is, and attacking.  The aggression system consists of each playable character in the battle has a meter that represents how much aggression the monster currently has for that character.  Whatever character the monster has the most aggression for (i.e. the character whose meter is the highest) will be the character it attacks.  Each monster will have either a single attack or a range of attacks.  If a monster has multiple attacks, each attack will have a percentage associated with it.  This percentage determines how often that attack happens.  For example, if a monster has three attacks, the basic attack would have a 75% change of that attack being used, the next attack my have a 20% change of occurrence, and the last, most powerful, attack would have 5% change of being used.  The A.I. will also be able to use special abilities, which could be an attack specific to the monster or a general defensive/offensive boost.

Functions

void CrazyEnemy::ChooseTarget(List of players);

ChooseTarget() is a simple function that will look at each characters aggression meter and chooses the character with the highest aggression as the target.  ChooseTarget()’s only parameter is a list of the playable characters.

void CrazyEnemy::ChooseTarget(List of players)

{


while(walk through player list)


{



if(current player’s aggression > AI_Target’s aggression)




AI_Target = current player;


}

}

int CrazyEnemy::ChooseAttack();

Attack() is a simple function that chooses an attack from the monster’s attack list and returns the chosen attack.

Int CrazyEnemy::ChooseAttack()

{


int rando = rand() % 100;


int current = 0;


for(each attack in options)


{



current += attackpercent * 100;



if(rando < current)




return current attack’s index;


}


return default attack index; (shouldn’t actually get to this line)


}

Special Abilities

Overview

Special abilities will mainly be a list of effects that party members or monsters can have access to use during battle.  There are two types of abilities, effect and attack.  The effect special ability will change the character or monsters stats for some period of time, usually for one attack or for the rest of battle.  The stats that can change are, strength, defense, speed, ability to dodge, increase HP, increase AP, and revive a ‘dead’ character.  The attack abilities are specific to only one character or monster.  These abilities include jump attacks, multiple character attacks, multiple attacks, and drain attacks.

Each character and monster in Crazy Cross will have ability files, that specifies what abilities they have and how much ability points it takes for them to use each one during battle.  The lay out of these files is very simple, first is the name of the ability, the number of AP points needed to use the ability, and lastly the index number of what ability to do.  Depending on the ability an extra number may follow to determine how strong the ability is and or another abilities are listed.  This allows us to make an ability out of smaller abilities.  Here is an example of an ability file,

//Crazy Lou's special attack #1

Dynamic Lou
(name of ability seen in game)

//AP cost

2

(the cost of the ability in AP)

//strength increase

0

(the index number of an ability)

//increase by %

50

(the number of how strong to use that ability)

//defense increase

1

(the index number of an ability 2)

//increase by %

50

(the number of how strong to use ability 2)

Battle Engine

Overview

The Battle Engine has three main stages the init, the main loop, and the closing.  The init part of the Battle engine initializes everything for the battle that is about to take place.  This includes the characters in the users party, the random monster they are going to fight, the camera, the battle music, the winning music, the special effects, the OpenGL objects, and the input.  Once everything is has been initialized, the main loop of the battle engine is called.  The main loop has a number of priorities to take care of.  These priorities are checking character and monster animations, checking for attacking characters or monsters, handling the battle queue, checking to see if the user won, and checking to see if the user has lost.  If the user wins, return the ‘won battle’ value so that the winning animation and music can be done.  If the user loses, return the ‘lost battle’ value so that the game over screen can be displayed.  After the outcome of the battle, the close engine function is called.  This function’s duty is to release all the data that is no longer needed for the battle, since it’s over.

Data Structures

The Battle Engine itself is encapsulated within a class entitled, appropriately, BattleEngine.  This class has internal representations of all the information necessary to run it including, most notably, a pointer to the MainData structure where it has access to the information about the characters and enemies currently fighting each other.

class BattleEngine
{

private:


MainData
*pData;
// Necessary for access to all pertinent information








// (contains pointers to character and enemy lists)


BattleLevel
*level;
// The current Level to draw, check scripts, etc.









// (has pointers to all the music to be played)


list<BattleActions> battleQueue;

public:


//member functions including the battle loop, init, and terminate

};

The BattleLevel encapsulates a battle by associating most of the battle’s unique features together.  This includes the Arena which is to be drawn, the pre-set camera scripts for camera movement during battle, an index representing which battle transition to use to enter it (this can vary even from battle level to battle level).  It also includes pointers to the three themes of music that can play during a given battle (the main battle theme, the theme for winning and the theme for losing).  This structure helps to organize battles into concrete objects that can be loaded and destroyed at will.

class BattleLevel
{

private:


Arena battleArena;


CamScript battleCamScripts;


BattleScript battleScript;


Song * battleTheme, * victoryTheme, * failureTheme;


int whichTransition;

public:

//functions to load/initialize, play the proper theme song, run the 

//proper camera scripts, run any existing battle scripts if they exist, 

//and draw the level.

};

Battle Queue

The heart of the battle engine is the battle queue.  The battle queue is a list, in order, of what action the battle engine should run next.  However, it is not this simple.  The battle engine cannot run right through the list and run one thing after another.  Depending on what the actions are, there may be some animations that need to be displayed or maybe a summoning spell is running and the battle engine must wait for that action to be finished before running the next action on the queue.  

The battle queue serves two purposes, an organized way to save the battle actions and also to create an illusion of constant flow in the battle.  A queue is a list that has the first in, first out rule, so the actions are added to the end of the list, and when the action reaches the front it is handled.  This will allow actions to be primed so when one action is executed, the battle engine can decide when to run what ever is next in the list.  This will create the illusion that we want.  For example, while one character is attacking, the moment the character starts running back to its position, the next character can be running up to the monster to do its attack.  Thus, we end up having a more real time battle then a turn based battle.

The battle engine does not handle any menu or input related messages, in fact it is the other way around.  The menu handles the input and then sends the battle engine a message saying what action the user chose and then the battle engine places that action at the end of the queue.  These messages from the menu system are the only actions that will be put on the battle queue from an outside source.  The battle engine will decide all other actions place on the queue.  The battle engine will read the queue for the next action to execute until the battle is over.  

int BattleEngine::Run()

Run() is the function that will be called to start a battle.  It calls the RunIntro() function that initializes the battle, has the main battle loop, and runs RunClosing when the battle is over.  The main loop calls updateBattle() which will return if the battle is still going, or if it ended.  The main loop will not exit until the Battle has ended.  The function returns if the player has won the battle or not.

int BattleEngine::Run()

{


RunIntro();


while(!done)


{



if (Is There A Message Waiting?)



{




if (Have We Received A Quit Message?)





done=TRUE;




else
















{





Translate The Message





Dispatch The Message




}



}



else
// If There Are No Messages



{




Grab Timer Value Before We Draw




Draw The Scene.




Update Screen




Handle Input




{





updateBattle()





if(the battle is over)





{

if(player loses)


success = false

done = true





}





}



}


}


RunClosing();


return (success); //return whether or not the party won

}

int
BattleEngine::RunIntro()

RunIntro() is the function that does the first part of the battle engine, which is initialization.  Most of the data for the battle engine is loaded at the start of the game, the data that is specific to the battle taking place is the data RunIntro() will be loading.  This includes the battle music, characters, enemies, arena, and camera scripts.

int
BattleEngine::RunIntro()

{


play music


while(playing special ‘you got into a battle’ effect)


{



load characters



load enemies



load arena


}



load camera scripts


run first camera script


run fade-in


return 0;

}

int BattleEngine::UpdateBattle()

UpdateBattle() is the function that checks and updates all the possible battle scenarios.  This involves checking for the animations of the characters/monsters to see if they are currently hitting anyone, checking to see if any summons have been phoned, checking to see if any monsters or characters are dead or dying, and checking if the battle is over.  UpdateBattle() has three return values player victory, player failure, and battle not over.  As long as the battle not over is being returned, UpdateBattle should be called again.  When UpdateBattle() returns player victory or player failure, the battle is over and UpdateBattle() should not be re-called.

int BattleEngine::UpdateBattle()

{


check characters animations


check enemies animations


check if there is anyone summoned


for(each good guy) {



check to see if they are attacking an enemy



if(they are hitting enemy)




check to see if their attack has more hits after this one




check to see if the enemy is dying




check to see if the enemy is dead


}


if(no enemies are alive)


{



call winning code



return victory


}


or(each bad guy)



check to see if they are attacking a good guy



if(they are hitting a good person)




check to see if their attack has more hits after this one




check to see if the player is dying




check to see if the player is dead


}


if all good players are dead


{



run death thing



return failure;


}


return battle not over;

}

int BattleEngine::HandleInput()

HandleInput() gets the next message on the stack and returns it.  

int BattleEngine::HandleInput()

{


Get next input from menu

}

Over-World Engine

Overview

The Over-world Engine is the game loop that runs when the player is not in battle.  The main functionality of the over-world is to provide collision detection and direct movement for the character as well as running pre-set scripts from the scripting engine, cut-scenes from the cut-scene engine and initiating random battles when necessary.  

The main phase of the over-world engine is the loop itself, which checks for windows messages, draws the screen, updates the input (bringing the player into the menus, if necessary), moves the character based on input, checks for any necessary scripts to run, and initiates random encounters if a random.  The actual control loop for the Over-world engine can be found in the Control Loops section of this document.

Data Structures

The Over-world Engine itself is encapsulated within a class entitled, appropriately, the OverworldEngine.  This class has internal representations of all the information necessary to run it including, most notably, a pointer to the MainData structure where it will take the information about the characters for passing on to other engines such as the battle engine.

class OverworldEngine
{

private:


CrazyCharacter

MainCharacter;
// For drawing the main model


list<CrazyNPC>

NPCs;


// All NPCs currently active


MainData
*pData;
// Necessary for access to all pertinent information


Level
*level;

// The current Level to draw, check scripts, etc.


Song
*theme;

// Pointer to the current level music

public:


//member functions including the over-world loop, init, and terminate

};

The Level class fully encapsulates a particular “level” in the game.  This means the arena in which the player walks around in, with a collision map and any scripts associated with it.  It also includes a battleLevel in case the player can encounter random monsters in the area (the battleLevel object will be left blank if the player does not encounter enemies at all).  Finally, it includes an index to the song that should be playing as the “level theme” or “over-world music”.  This structure helps to organize the levels of the game into concrete objects that can be loaded and destroyed at will.

class Level
{

private:


Arena overworldArena;


BattleLevel battleArena;


CollisionMap c_map;


int songIndex;


Script scripts;


int randomBattleType;


CamScriptObj cameraScripting;

public:

//functions to load/initialize, check for a possible collision given a 

//point, run the scripting engine, run camera movement, play the 

//correct song given a “song book” object, draw the level, and to 

//initiate battles.

};

Functions

The heart of the over-world engine is the Run function which has the entire OverworldLoop enveloped within it.  For a good idea of what the loop looks like, see the Control Loop section in this document.

The OverworldInit function uses the MainData object to load in all data necessary to display and interact with the current Level.

void OverworldInit(MainData * theWorld)

{


start playing over-world theme


load the main character model


load all NPC models


load the current arena


set up the camera


fade the level in

}

The OverworldTermination function just undoes all of the loading from the init function

void OverworldTermination(MainData * theWorld)

{


stop playing over-world theme


unload the current arena


unload all NPC models


unload the main character model

}

Pre-Rendered Engine

Overview

The Pre-rendered Engine is basically the same as the Over-world Engine.  It follows the same process, including the same initialization and termination functions.  Furthermore, it uses the same data structures, utilizing the pre-rendered arenas instead of normal arenas.  The difference between the engines is that the pre-rendered engine does not camera modes (the camera is always fixed), nor the physics engine (collision is purely done using the original method), and the draw function (has to be organized differently to accommodate the pieces of the pre-rendered arena’s draw functions.  For reference on any other part, see the Over-world Engine’s section.

Scripting Engine – Over-World

Overview

Scripting is the process of taking text files and converting the lines of text or “scripts” into visible actions within the game.  By doing this, entire levels may be constructed without having to recompile or change the executable in any way.  Instead, only the text files themselves need be altered in order to completely change the way a level behaves.  At perhaps its most basic and important level, scripting allows for such things as linking one map to another.  I.e. when the player visits a certain location (say, the edge of a map), a script will trigger, sending the player to the level that the current one connects to.  Scripting is also how cut-scenes are played and what dialogue is spoken when.

After careful consideration, we have decided to set up the scripting system as a trigger-based system in the vein of Bard’s Tale or Starcraft editors (and numerous others).  A trigger is basically a location or tile (in some cases a rectangle of tiles) that checks a number of conditions for being true, the most common of which is whether or not the main character is standing at that location.  Of course, there may be any number of conditions for a particular trigger.  If all of the conditions are met, then the trigger "activates", performing a number of resulting effects.  The effects can be any those listed above, and the order they are specified in the trigger are the order they are executed in.

An important thing to note about over-world triggers is that they usually involve the use of a “Location” which is a rectangular collection of tiles as determined by the Collision System.  All “locations” in a given script/map are specified at the top of the script and are referenced by index number later in the triggers themselves.

Specifics

Actions that can occur as a result of a script/trigger :

 1) Camera Movement/Script

 2) Character Movement (Instant vs. Gradual/Time-based)

 3) Character Animation

 4) Sound Effects

 5) Music Change/Stop/Start

 6) Battle Encounter

 7) Text Messages Boxes (for Dialogue, Instructions, etc.)

 8) "Spawning" (adding) Character/Enemy Models

 9) Modifying Stats (Character, Party or otherwise)

10) Set World Flags

11) Changing Levels

12) Pausing/Waiting for X Amount of Time

13) Remove this trigger

14) Emotes (distinguishable from dialogue text)

15) Other Model Movement (for instance, having a door open.. tree crash..)

16) Model distortion (For cut-scenes, mostly)

17) Other "Special Effects" (e.g. particles, etc.)

Things that cause triggers to be “triggered” :

 1) Character is standing at location N

 2) A specific Flag is set

 3) An amount of time has elapsed

 4) "Always"

A TriggerCondition struct is an abstract way of representing a single condition.  Of course, individual conditions may have more than just an identifier.  They also need variables for locations and which characters to manipulate care about.

struct TriggerCondition
{


eTriggerConditions type;


//other variables for specific conditions

};

Where eTriggerConditions are:

enum eTriggerConditions {eCharAtLocation,







 eFlagSet,







 eMaxTriggerConditions};

The TriggerEffect struct is also an abstract way of representing a single effect of a trigger.  It also needs more than just a type identifier because there are so many things that Triggers can possibly affect, from the music to character position to animation to even the level the character currently is on.

struct TriggerEffect
{


eTriggerEffects type;


//other variables for specific effects

};

Where eTriggerEffects are:

enum eTriggerEffects {eCamMovement,






  eCharMovement,






  eCharAnimation,






  eSoundEffects,






  eMusicChange,






  eBattleEncounter,






  eMessageBox,






  eAddChar,






  eModifyStats,






  eSetFlag,






  eChangeLevel,






  eWaitForTime,






  eRemoveTrigger,






  eMaxTriggerEffects};

Classes

A Trigger is the embodiment of a single action that can occur in a given level.  It can have any number of conditions and any number of effects:

class Trigger
{


RECT location;


list<TriggerCondition> TC;


list<TriggerEffect> TE;

public:


//access functions to add and remove triggers from the list


int CheckConditions() {



//run through all TriggerConditions and if it hits 



//one that it doesn't satisfy, return 0


};


int Activate() {



//run through all TriggerEffects and activate each



//one in turn, if one is to destroy the trigger


};

};

A Script is the more general grouping of all the Triggers associated with a certain level.  This allows for grouping the scripts according to level and reduces the total number of scripts that must be in memory at a time by only having the active one available at any one given moment.

class Script
{


//contains a number of related Triggers specific to a certain Level


list<Trigger> triggers;

public:


//load in the single script from a text file


int Load();


//run through all triggers in the list, checking conditions



int Run();

};

To Further abstract the scripting process, the Over-world Engine calls the ScriptEngine to perform all of its script-related tasks for a given level.  The Script Engine needs only know what level is currently active for it to be able to call up the proper script or group of triggers that currently apply.

class ScriptEngine
{


//contains all of the scripts in the game

public:


//functions to have the script engine “run” the current script

};

Scripting Engine – Battle

Overview

Scripted battles are a much less common occurrence than the standard scripting (which is where the bulk of the work goes), but there are a few battles that see some scripting.  Because it is less important, it is less necessary to be robust and can therefore have code assistance when need be.  A battle is determined to be scripted if it is called for from within the scripting engine as being a scripted battle.  A number is specified at that time indicating which script the battle is supposed to call upon.

There are only a few features that the scripted battles need.  First of all is having text appear at the top of the screen (and perhaps spoken dialogue to be associated with it).  This can be triggered typically after a certain number of turns have elapsed.  The second is ending the battle prematurely, i.e. before either the enemy is defeated or the characters are defeated.  This can be caused usually again after a certain number of turns have elapsed or another trigger was set during the battle.  There is at least one battle in the game that will require this feature as the boss himself is impossible to defeat and the player must simply survive long enough.  The third and final type of feature is having a battle’s win conditions be different than normal.  Specifically, the party may lose after they lose a single player instead of the entire party or, as the story neccessitates, even though all members of the party are defeated, the game keeps progressing (skipping any sort of victory theme in the process).

Specifics

Actions that can occur as the result of a battle trigger:

· Text Message Appears

· Battle Ends In Pseudo-Victory (Player doesn’t lose but doesn’t get experience)

Things that cause battle triggers to be “triggered”:

· X number of turns have elapsed

· All of the party is dead

Classes

Because the scripting is simpler for battles, there is no real need for a “Script Engine”.  Instead battle scripts are simply broken up into triggers and a single script that holds the entire list of triggers for a given battle.

A BattleTrigger represents a number of conditions and effects that are represented on screen but specified in a text file.  It can have any number of conditions and any number of effects (that are specific to battle triggers, of course):

class BattleTrigger
{


list<BattleTriggerCondition> BTC;


list<BattleTriggerEffect> BTE;

public:


//access functions to add and remove triggers from the list


int CheckConditions() {



//run through all TriggerConditions and if it hits 



//one that it doesn't satisfy, return 0


};


int Activate() {



//run through all TriggerEffects and activate each



//one in turn, if one is to destroy the trigger


};

};

A BattleScript is the group of all triggers in associated with a scripted battle.  This allows for grouping the scripts according to level and reduces the total number of scripts that must be in memory at a time by only having the active one available at any one given moment.  Technically all battles will have a battle script, but the battle scripts are empty unless specified by the Over-World Scripting Engine.

class BattleScript
{


//contains a number of related Triggers specific to a certain battle


list<BattleTrigger> triggers;

public:


//load in the battle script from a text file


int Load();


//run through all battle triggers in the list, checking conditions



int Run();

};

Camera Movement

The camera movement can be split up between the two modes of the game, the over-world and the in battle movement.

Over-world

The over-world has three modes of camera movement.  The first is the more complicated of the three, loading in set camera positions and facings from the collision file for each tile.  Then the camera is position and facing is interpolated as you step from one tile to the next.  If a tile has no facing/position set in the file, then it will just continue to use the position and facing it had.  The second and third methods are similar: they both give control of the camera to the user.  The second method is set up like the Resident Evil series of games where you rotate the character with the left and right arrow keys, then move them forward in the direction they are looking with the up arrow.  A key can be pressed to move the camera behind them.  The third and final method has 8 set directions for the camera to be facing and movement of the player is relative to where the camera currently is.  Keys can be pressed to rotate the camera’s position to the closest one on the left or the right.

Battle Arena

The battle arena will have set paths read in from a battle arena file and stored in the CameraScript Class.  During the sequence of the battle, it is then just a matter of calling the appropriate index.  For ease of portability across Arena’s, the indices will correspond to #defines.  For example, BATTLE_START_1, CRITICAL_HIT_2 or END_BATTLE_1.   Though in the forest arena the camera could take an extra movement to avoid passing through a tree, the function call wouldn’t change at all then when the cave arena scripts were loaded.

User Interface

Overview

The UI is made up of basic elements (non-game specific) that are used in various combinations to make more complicated UI elements (still non-game specific), that are then used in the specific game areas to make the battle menus, the item shops, the character dialog boxes complete with character portraits, etc (game specific).

The Base UI elements are listed first, with functional descriptions, followed by the Base Classes for each one and a description of what implementation will be like.  After that, the game specific elements needed for Crazy Cross will be explained.

Base UI Overview

The UI has the following functional elements:

Font

· Represents one single font.

· Needs the information stored in a CCF font file and the associated BMP file.

· CCF and BMP created with "Fontification", the custom font builder (see Font Tool section).

· Crazy Cross will only utilize one font, so no font managing code is needed.

Gradient

· Represents one single gradient style (that can be drawn anywhere).

· Has two colors (upper left and lower right).

· Can be drawn at any (x, y) and any size (width, height).

Bitmap Loader

· Represents one single bitmap file.

· Reads in a BMP file (maybe PNG eventually).

· Stores the image in an RGBA-format (32-bit) buffer in memory.

Filename List

· This is used to store graphic filenames (with relative paths)

· Each entry it identifiable by a 16 character alphanumeric string.

· Loadable from a file to provide alias support for images.

Texture Bank

· Represents many OpenGL-style textures.

· Takes an RGBA memory buffer or BMP file name and makes a texture out of it.

· All textures are indexable by a 16 character alphanumeric string.

· Can draw any image at any position.

· Can stretch any image by changing the destination width and height.

Dialog String Database

· Represents many strings containing CCM (CC Markup).

· Loads these strings from a text file into an internal database.

· CCM has two markups: <B> </B> for bold, and <C 255,255,0> </C> for an RGB color.

· All strings have an ID (string), up to 16 chars.

· All strings indicate an optional portrait image (none for no portrait) and a position (top/bottom)

Frame

· Represents a single frame-style.

· Uses 8 images to create a border.

· Requires a Texture Bank for border images.

· Allows stretching or tiling of top/bottom/right/left border images.

· Can be drawn at any arbitrary (x, y) and (width, height).

Dialog Box

· Represents any given dialog box.

· Requires a font, a string database, a frame, and a gradient.

· To draw a specific box, a 16 character alphanumeric string that references the Dialog String Database is required.

· To draw a general box, a pos (x, y), size (width, height), and a string.

Menu

· Represents one menu

· Associates with a font, frame, gradient, and Image Bank.

· Has a display string for each menu entry, as well as an action string, which specifies either 1) another menu, or 2) an action (interpreted by the game).

· Can allow single or double column displays.

· Keeps track of what part of the menu is visible, so menus can be longer than the amount of screen space they occupy.

Base UI Functionality

UI_Font

UI_Font {


bool LoadCCF(char * filename);


bool isValidFont();


int GetHeight();


int GetStringWidth();


void Print(x, y, string);


void PrintMarkup(x, y, string);

}

UI_Font::LoadCCF

In: filename (i.e. "crazycrosssystemfont.ccf")

Out: true if successful load, false if failure

Desc: This function loads in a custom CCF font file and it's associated texture file (the texture filename is taken from the .cff file).  The basic algorithm is to generate display lists for each character in the font, for both the normal and bold versions on the font.  The display lists will later be used by the Print functions for getting the font on the screen.

UI_Font::isValidFont

In: -

Out: true if the font is loaded and ready to print, false if not

Desc: This function merely checks an internal variable that is only set at the end of a font successfully loading.  This allows the user to check to make sure the font they want to print with didn't have any problems loading.

UI_Font::GetHeight

In: -

Out: the height of the font (in pixels)

Desc: Returns the height of the font, and does nothing else.  Returns on -1 when the font is invalid.

UI_Font::GetStringWidth

In: a string (char *, null terminated)

Out: the width of that string

Desc: Returns the width of a specified string, or -1 for an invalid font.  The height is constant across a font, so you can use GetHeight to retrieve the height of any given string.

UI_Font::Print

In: position (x, y) and an unformatted string (char *)

Out: -

Desc: This will allow any string (char *, null terminated) to be drawn to an OpenGL window at any (x, y) location, provided the rendering pipeline is set up for 1 to 1 orthogonal projection with the window width and height the same as the pixel resolution.

UI_Font::PrintMarkup

In: position (x, y) and a formatted string (char *)

Out: -

Desc: The same as Print, but allows the following markup language:

<B> </B> - surrounds text to be made "bold"

<C #.#, #.#, #.#> </C> - surrounds text whose color should be altered (the three comma separated numbers indicate a color in R, G, B, where each number if from 0.0 to 1.0).

UI_Gradient

UI_Gradient {


void SetUpperLeftColor(double R, double G, double B);


void SetLowerRightColor(double R, double G, double B);


void Draw(int x, int y, int width, int height);

}

UI_Gradient::SetUpperLeftColor

In: double R, double G, double B

Out: -

Desc: Sets the upper left corner of a gradient rectangle to the color defined by (R,G,B) (each from 0.0 to 1.0).

UI_Gradient::SetLowerRightColor

In: double R, double G, double B

Out: -

Desc: Sets the lower right corner of a gradient rectangle to the color defined by (R,G,B) (each from 0.0 to 1.0).

UI_Gradient::Draw

In: position (x, y), size (width, height)

Out: -

Desc: Draws a rectangle filled with a gradient that fades from the upper left corner defined by SetUpperLeftColor to the lower right corner defined by SetLowerRightColor.

UI_Bitmap

UI_Bitmap {


void Clear();


void SetSize(width, height);


void GetSize(&width, &height);


unsigned char * GetBitPointer();


bool LoadFromFile(char * filename, unsigned char mode, int x, int y);


bool LoadFromBuffer(uchar * buffer, unsigned char mode, int x, int y);


void SetAlpha(unsigned char mode, int x, int y);

}

UI_Bitmap::Clear

In: -

Out: -

Desc: Clears out the entire bitmap (to black, all 0's)

UI_Bitmap::SetSize

In: int width, height

Out: -

Desc: Set the size of the bitmap.  This will free the current bitmap and allocate a new buffer of width * height * 4 (32-bit color, RGBA).  You should clear the buffer or fill it with something directly after doing this, as it will be filled with junk.

UI_Bitmap::GetSize

In: width and height to be filled in (by reference)

Out: width and height image is set to

Desc: Retrieve the current width and height of the bitmap.  If 0's are returned, then there is no bitmap.

UI_Bitmap::GetBitPointer

In: -

Out: pointer to the first byte of the image (in RGBA format)

Desc: This function returns a pointer to the start of the image buffer, or NULL if no image has been defined.

UI_Bitmap::LoadFromFile

In: filename of image, mode for color key, and position of color for color keying

Out: true if successful, false if not

Desc: This function will load in a bitmap (.bmp) file.  It will free whatever this bitmap currently has loaded in and re-allocate all memory for this new image.  All previous pointers retrieved from GetBitPointer are invalidated.  The mode parameter is one of the following defines:

#define LOAD_BMP_COLORKEY_NONE

0

#define LOAD_BMP_COLORKEY_UPPERLEFT
1

#define LOAD_BMP_COLORKEY_LOWERLEFT
2

#define LOAD_BMP_COLORKEY_UPPERRIGHT
3

#define LOAD_BMP_COLORKEY_LOWERRIGHT
4

#define LOAD_BMP_COLORKEY_CENTER

5

#define LOAD_BMP_COLORKEY_ARBITRARY
6

If the define LOAD_BMP_COLORKEY_ARITRARY is specified, then the x and y will specify which pixel to use.  The color keying use basically just takes the color of the pixel specified by mode and every time that color appears in the image, it is replaced with black and the alpha byte is set to transparent.

UI_Bitmap::LoadFromBuffer

In: a buffer with a bitmap (.bmp) file loaded into it, a mode for color keying, and an x and y of a pixel to be used for color keying.

Out: true if successful, false otherwise

Desc: This is the same as UI_Bitmap::LoadFromFile, only the file has already been loaded into memory, and so the bitmap is read directly from the buffer in memory.  The mode and x, y parameters are also the same.

UI_Bitmap::SetAlpha

In: a mode for color keying and a pixel (x, y) to use for color keying.

Out: -

Desc: This allows the color keying that is allowed during a file load to be applied at any point to any image in memory, not just bitmaps being loaded from files.  The parameters are the same as the last 3 parameters of the LoadFrom* functions, and act on the image in the bitmap's internal buffer.

UI_FileAlias

struct UI_FA_Entry {


char filename[MAX_FILENAME_LENGTH];


char alias[MAX_ALIAS_LENGTH];


unsigned char mode;


int color_key_x, color_key_y;

}

The above data structure is a single entry that defines a graphic file and associated color key mode/x/y (as explained above) in terms of a unique 16 character alphanumeric string.

UI_FileAlias {


bool LoadFromFile(char * filename);


bool LoadFromBuffer(unsigned char * buffer);


UI_FA_Entry * GetFilename(char * alias);


UI_FA_Entry * GetAlias(char * filename);


void Clear();

}

UI_FileAlias::LoadFromFile

In: filename of text list of the aliases

Out: true on successful loading of alias information, false if the file has a syntax issue, doesn't exist, or is binary (vs. ascii)

Desc: This function takes in a text file in the following format:

[whatever]

.

.

.

[filealias]

cavelou0001 "images\lou\cavebob48.bmp"

cavelou0002 "images\lou\cavebif32.bmp"

louwithtransparency "images\mattebg\louprofile22.bmp" 0 0

[moreofwhatever]

.

.

.

The file can have other information besides the alias list, but the alias list has to start with [filealias] and end with a line that starts with '['.  Comments (starting a line with "'", "//", ";", or "#") are allowed, as are empty lines, but any other line has to fit the above format.  The final two numbers (e.g. 3rd entry above) are optional and indicate LOAD_BMP_COLORKEY_ARBITRARY is desired at the indicated point.  Otherwise, if the final two numbers are not present, then LOAD_BMP_COLORKEY_NONE is assumed.

UI_FileAlias::LoadFromBuffer

In: pointer to buffer

Out: true if successful load, false otherwise

Desc: Same as above, only looking at text already in memory instead of opening a file and looking at that.

UI_FileAlias::GetFilename

In: string with a file alias

Out: entry indicated by the input alias string, or NULL for no matching alias found.

Desc: Given a string containing an alias (16 character alphanumeric with no white space), the above function returns a pointer to a struct containing the corresponding graphic file information.  The pointer is owned by UI_FileAlias and so should be discarded WITHOUT freeing when done.

UI_FileAlias::GetAlias

In: string with a filename

Out: the alias that corresponds to that filename, or NULL if not found.

Desc: Same as above, only searching through filenames for the entry instead of the alias strings.

UI_FileAlias::Clear

In: -

Out: -

Desc: Clears the list of UI_FA_Entry's, free all associated memory (any pointers gotten from above two functions will no longer be valid).

UI_TextureBank

struct UI_TB_Entry {


char alias[MAX_KEY_LENGTH];


GLuint texture;


int width, height;


int instances;

}

This structure keeps track of a texture and it's alias.  It includes an instances variable to track how many times it has been instantiated (only one instance is made, but it can't be released until all callers are done with it).

UI_TextureBank {


void AssociateFileAlias(UI_FileAlias * filealias);


bool Load(char * alias);


void Release(char * alias);


void Clear();


void GetSize(char * alias, &width, &height);


void Draw (char * alias, x, y, width, height, bool stretch);

}

UI_TextureBank::AssociateFileAlias

In: file alias string

Out: -

Desc: Associates a file alias structure with the texture bank (so the texture bank can translate between filenames and an alias).

UI_TextureBank::Load

In: load in a texture from it's alias name

Out: true on success, false on failure

Desc: Load a texture from it's alias name.  Uses associated file alias class to find the filename.  If there is no file alias class, then the unction fails (returns false), in addition to failing if the alias cannot be found.

UI_TextureBank::Release

In: load in a texture from it's alias name

Out: true on success, false on failure

Desc: This releases a texture that has been loaded using Load.  Needs to be called the same number of times load has been called on a texture.

UI_TextureBank::Clear

In: -

Out: -

Desc: This clears the entire bank of textures, releasing all of them back to OpenGL.

UI_TextureBank::GetSize

In: an alias to a texture and a width and a height to be filled in

Out: width and height (by reference) of texture, true if successful, false if failure (no alias exists)

Desc: This function will look for a specific alias, and, if found, will fill in width and height with the textures' width and height.  If no such texture exists, or some other problem is encountered, the function returns false.  If false is returned, width and height have not been modified.  If it returns true, then width and height now contain the width and height of the texture.

UI_TextureBank::DrawFromAlias

In: alias of texture, pos (x, y) and size (width, height) to draw, and a bool whether to stretch the image to fill the passed in size (if the size is not the same as the texture), or tile it (or crop it if the specified size is smaller).

Out: true if texture is found and is drawn, false if failure.

Desc: This draws any given texture anywhere on the screen at any size.  If the size specified is larger or smaller than the actual size, than you can either stretch the texture to fill the space or tile it, depending on the last parameter (true == stretch, false == tile).

UI_StringDB

struct UI_SDB_Entry {


char alias[MAX_ALIAS_LENGTH];


char string[MAX_STRING_LENGTH];


char portraitAlias[MAX_ALIAS_LENGTH];


int position;
// UI_DIALOG_TOP or UI_DIALOG_BOTTOM

}

This structure holds a string, optional portrait, and position of a standard dialog box.  This is all referenced by the first string, the alias, which is a standard 16 character alphanumeric string.

UI_StringDB {


bool LoadFromFile(char * filename);


void Clear();


UI_SDB_Entry * GetStringEntry(char * alias);

}

UI_StringDB::LoadFromFile

In: filename of string database

Out: true on success, false on failure

Desc: This loads in a string database from a text file.  It returns true on success, and false on failure.

File Format sample:

[stringdb]

CaveLouEmma001 “<B>Lou:</B> Hey Emma, what are we doing in this cave?” LouHappy001 BOTTOM

CaveLouEmma002 “<B>Emma: </B>I have no idea.” EmmaConcerned001 BOTTOM

UI_StringDB::Clear();

In: -

Out: -

Desc: Clears all strings out of a string database.

UI_StringDB::GetStringEntry

In: alias of string database entry

Out: pointer to an entry struct with corresponding string, or null on failure

Desc: This function looks up an alias (by searching through the list of string entries) and returns a pointer (owned by UI_StringDB) that the user can use to get the string and related information.  If the alias cannot be found (or the list is empty), this function returns NULL.

UI_Frame

UI_Frame {


void AssociateTextureManager(UI_TextureManager * texman);


bool LoadLayoutFromFile(char * filename);


bool SetTexture(int location_index, char * alias);


void Draw(x, y, width, height, bool stretch);

}

UI_Frame::AssociateTextureManager

In: texture manager pointer

Out: -

Desc: Associates the Frame with the given Texture Manager, so that the frame can find it's textures.

UI_Frame::LoadLayoutFromFile

In: filename with frame layout information

Out: true if successful, false otherwise

Desc: This function reads in the text file specified which has an entry of the following format:

[frame]

UpperLeft=path\ul.bmp

UpperRight=path\ur.bmp

LowerLeft=path\ll.bmp

LowerRight=path\lr.bmp

Top=path\t.bmp 0 0

Bottom=path\b.bmp 0 0

Left=path\l.bmp 0 0

Right=path\r.bmp 0 0

This specifies all the details about the frame, and can include color keying coordinates (as explained earlier) after the filename (like in the last four).

UI_Frame::SetTexture

In: an alias, and location_index, which is one of the following:

#define FRAME_TOPLEFT

0

#define FRAME_TOPRIGHT

1

#define FRAME_BOTTOMLEFT
2

#define FRAME_BOTTOMRIGHT
3

#define FRAME_LEFT


4

#define FRAME_RIGHT


5

#define FRAME_TOP



6

#define FRAME_BOTTOM


7

Out: true on success, false on failure (to find alias)

Desc: This allows individual assignment of each image in a frame (as opposed to loading them out of a text file).

UI_Frame::Draw

In: pos (x, y), size (width, height), and true for stretching, false for tiling/cropping

Out: -

Desc: This function draws the frame at the given location and size with the given stretch/tile option.

UI_DialogBox

UI_DialogBox {


void AssociateFont(UI_Font * font);


void AssociateStringDB(UI_StringDB * sdb);


void AssociateFrame(UI_Frame * frame);


void AsscoiateGradient(UI_Gradient * gradient);


void AssociateTextureBank(UI_TextureBank * texbank);


void DrawAlias(char * stringAlias);


void Draw(int x, int y, int width, int height, char * string);

}

UI_DialogBox::AssociateFont

In: font pointer

Out: -

Desc: Associates a font to draw the text in on a dialog box.

UI_DialogBox::AssociateStringDB

In: string database pointer

Out: -

Desc: Associates a string database to pull strings out of

UI_DialogBox::AssociateFrame

In: frame pointer

Out: -

Desc: Associates a frame (style) with the dialog box class.

UI_DialogBox::AsscoiateGradient

In: gradient pointer

Out: -

Desc: Associates a gradient with a dialog box

UI_DialogBox::AssociateTextureBank

In: texture bank pointer

Out: -

Desc: Associates a texture bank with a dialog box

UI_DialogBox::DrawAlias

In: pointer to a string alias

Out: true on success, false on failure

Desc: Looks up the string alias in the associated string database and, if found, draws the string in the frame style and font associated with the dialog box class, as well as with the optional portrait that, if present, can be found by looking it up in the texture bank.  The drawing basically finds all the pieces it needs to draw (font, frame, gradient, etc) and calls their draw functions one by one, changing parameters for pos (x, y) and size (width, height) as necessary.

UI_DialogBox::Draw

In: pos (x, y), size (width, height), and a string to display.

Out: true on success, false on failure.

Desc: This does the same as above, but instead of finding the string (and position and optional portrait) from a string database, it simply takes them in as parameters.  This allows any custom dialog box to appear anywhere (with the associated font, frame, etc).

UI_Menu

UI_Menu {


void AssociateFont(UI_Font * font);


void AssociateFrame(UI_Frame * frame);


void AsscoiateGradient(UI_Gradient * gradient);


void AssociateTextureBank(UI_TextureBank * texbank);


int MoveSelectionUp();


int MoveSelectionDown();


int GetCurrentSelection();


void SetCurrentSelection(int selection);


void SetNumOptions(int count);


int GetNumOptions();


void SetMenuString(int option, char * string);


void SetNumColumns(int count);


int GetNumColumns();


void SetSize(width, height);


void GetSize(width, height);


void Draw(x, y);


void MakeActive(bool active);


bool isActive();

}

UI_Menu::AssociateFont

In: font pointer

Out: -

Desc: Associates a font to draw the text in on a menu.

UI_Menu::AssociateFrame

In: frame pointer

Out: -

Desc: Associates a frame (style) with the menu class.

UI_Menu::AsscoiateGradient

In: gradient pointer

Out: -

Desc: Associates a gradient with a menu

UI_Menu::AssociateTextureBank

In: texture bank pointer

Out: -

Desc: Associates a texture bank with a menu

UI_Menu::MoveSelectionUp();

In: -

Out: current selected item

Desc: This tells the menu that the input has received a call to move the currently highlighted item up one option.  This shouldn’t accept the action in the menu as being taken, but this function will return what the current selection is in case moving through menu’s changes something (like a  help message or a preview display).  The menu changes an internal variable and moves the selection image, wrapping around as necessary.

UI_Menu::MoveSelectionDown();

In: -

Out: current selected item

Desc: This tells the menu that the input has received a call to move the currently highlighted item down one option.  This shouldn’t accept the action in the menu as being taken, but this function will return what the current selection is in case moving through menu’s changes something (like a  help message or a preview display).  The menu changes an internal variable and moves the selection image, wrapping around as necessary.

UI_Menu::GetCurrentSelection();

In: -

Out: The currently selected item in the menu.

Desc: This merely returns the internal state variable indicating which menu option is currently selected.

UI_Menu::SetCurrentSelection();

In: Desired selection

Out: -

Desc: This sets the current selection to a specific element in the menu (providing that element actually exists).

UI_Menu::SetNumOptions

In: the total number of menu choices visible.

Out: -

Desc: This changes the total number of options available. Make sure to update the strings before displaying or you will have “ghost” menu choices available.

UI_Menu::GetNumOptions

In: -

Out: the number of menu choices available

Desc: This returns the total number of choices currently listed on a menu.

UI_Menu::SetMenuString

In: which option and a string containing the new option

Out: -

Desc: This function changes a particular choice’s menu text (assuming the choice number given is valid).

UI_Menu::SetNumColumns

In: number of columns

Out: -

Desc: This function changes the total number of columns that are to be displayed (only 1 or 2 will be supported).

UI_Menu::GetNumColumns

In: -

Out: number of columns

Desc: This function returns the current number of columns being used by a given menu.

UI_Menu::SetSize

In: size (width, height)

Out: -

Desc: This function sets the size of the menu (frame and all).  It is used to judge how much information can fit in the visible area, and how the column layout will fit.

UI_Menu::GetSize

In: size by reference (width, height)

Out: -

Desc: This function takes the current width and height of the menu and fills in the passed in variables with those values.

UI_Menu::Draw

In: pos (x, y)

Out: -

Desc: This draws the menu at the specified pos (x, y).  The menu text always anchors itself to the upper left corner of the given area.  Only what is completely visible in the main window will be drawn (in cases where the menu is longer than what can fit on the screen).

void UI_Menu::MakeActive

In: bool, true for active, false for inactive

Out: -

Desc: This function sets whether a menu is active or inactive.  If the menu is active, then it is colored differently than if it is inactive.  Only one menu should be active at any given moment, so make sure all other visible menus are made inactive.

UI_Menu::isActive

In: -

Out: bool, true if active, false if inactive

Desc: This function returns true when the menu is active, and false if inactive.

Cut-scene Engine

The cut-scene engine allows a series of still images and movies to be played back

CutScene Event

enum eventType {eSound,





eMusic,





eStopSound,





eStpMusic,





eTextBox,





eSlideShow,





eFMV,





eInGameCutscene,





eEndCutscene,





eMaxEventTypes,





};

The cutscene is made up of a series of events.  “Event” is a class which has some basic information stored in it.  The event types can be seen above.  Each event has an event type and a start time.

All other event types each have their classes that inherit from the event class:

class soundEvent:public event

class musicEvent:public event

class textBoxEvent:public event

class slideShowEvent:public event

class FMVEvent:public event

class inGameEvent:public event

Each of these classes have information stored pertinent to that particular event.  For example, the soundEvent contains the string that specifies the path name for the sound effect to be played by that soundEvent.

Governing all these events is a cutscene class.  This class stores a list of all the cutscene events to be played during that particular cutscene.

When a cutscene class is created, the constructor needs two things:  A pointer to the MainData, and the pathname to the cutscene file.  The cutscene is initialized, and loads in all the events it will need from the cutscene file and creates its list of events.  Then, the only thing the user needs to do is to call cutscene:Runloop() which runs the cutscene, exiting when the cutscene is done or aborted.

The exact format of the cutscene files is described in the cutscene file intro2.txt, but here is an example of a cutscene as used in the AftermathBlueSkyPark cutscene:

BEGIN CUTSCENE

START MUSIC 0 TIME 0

START SLIDESHOW

DISPLAY SLIDE intro0010 START TIME SINCE LAST 0

END SLIDE LENGTH 500

END SLIDESHOW

START SLIDESHOW

DISPLAY SLIDE intro0011 START TIME SINCE LAST 0

START TEXTBOX TIME SINCE LAST 100

AB01

END TEXTBOX LENGTH 4800

END SLIDE LENGTH 5000

END SLIDESHOW

START SLIDESHOW

DISPLAY SLIDE intro0011 START TIME SINCE LAST 0

START TEXTBOX TIME SINCE LAST 100

AB02

END TEXTBOX LENGTH 4800

END SLIDE LENGTH 5000

END SLIDESHOW

STOP ALL MUSIC TIME 3000

END CUTSCENE

As you can see, most of the cutscene file format is self-explanatory.  For further documentation on the file format, see the cutscene file Intro2.txt.  One thing to notice:  for textboxes, an alias is specified, as described in the UI section of the TDD.

Game Specific UI

Main/Over-world UI

CCUI_Main {

protected:


UI_Font



m_font;


UI_Gradient


m_gradient;


UI_FileNameList
m_filelist;


UI_TextureBank

m_texbank;


UI_StringDB


m_strings;


UI_Frame



m_frame;


UI_TextBox


m_textbox;

public:


CCUI_PlayerList
m_playerlist;


CCUI_Shop


m_shop;


CCUI_Battle


m_battle;


bool Init();


void MakeDialogBox(char * alias);


void MakeTextBox(x, y, width, height, char string);


void Deactivate();


bool isActive();


void Kill();

}

CCUI_Main::Init

In: char * filename

Out: bool: true on success, false on failure

Desc: This function starts up the main UI and loads the font, default gradient, file list, texture bank, string database, and frame based on the contents of the passed in file.  The file format would be like the following:

[main]

font=crazyfont.ccf

gradientUpperLeft=(r, g, b)

gradientLowerRight=(r, g, b)

filenameAliasList=alias.txt

stringDatabase=stringdb.txt

[frame]

.

.

.

This file can contain other sections (in fact, all text-based configuration can be based on the same file if desired), and they will be ignored by this function.

CCUI_Main::MakeDialogBox

In: Alias to a string database entry

Out: true on finding the alias, false if alias isn’t found

Desc: This function sets the active (a.k.a. visible) text box to contain the given string/portrait/position, taken from the string database.  The text box can be removed by calling Deactivate();

CCUI_Main::MakeTextBox

In: pos (x, y), size (width, height), and a string to display

Out: -

Desc: Makes the active text box be at the specified position and size with the specified string.  To remove the text box, call Deactivate().

CCUI_Main::Deactivate

In: -

Out: -

Desc: If there is an active (a.k.a. visible) text box, then it is made invisible.

CCUI_Main::isActive

In: -

Out: true if there exists an active (visible) text box, false if not

Desc: This function can be called to determine if there is currently an active text box.  This should be called by the main loop so that the main loop knows when to disable normal input and only process input that can deactivate the text box.

CCUI_Main::Kill

In: -

Out: -

Desc: This function kills off the main UI and frees ALL memory (should only be called right before the app quits back to windows).

Player List

CCUI_PlayerList

CCUI_PlayerList {


UI_TextBox
helpmessage;


UI_Menu

mainmenu;


UI_TextBox
timedisplay;


UI_TextBox
locationdisplay;


UI_TextBox
playerinfo[3];


UI_TextBox
items;


UI_Menu

itemmenu;


UI_TextBox
playerchanges;


UI_Menu

weaponsarmor;


UI_TextBox
playerstatus;


UI_TextBox
lvlpointdisplay;


UI_Menu

lvlpointassign;


UI_Menu

config;


Run()


Init()


Update()


Kill()

}

The player list is the screen that appears when the player hits the menu button on the over-world.  It allows configuration of the game options, status views of all players, re-equipping of all characters, inventory, and level point distribution.  The player list is run by having the Run function called, which takes over message processing just like the cut-scene engine:

Run() {


Init();


while (1) {



Windows Message Handling (PeekMessage(...), etc.)



Update();



if (UserWantsToLeaveMenu()) {




break;



}


}


Kill();

}

Where Init, Update, and Kill simply initialize all UI elements, update them by handling input, and kill them all off when the user is done (respectively).

In a Shop

CCUI_Shop

CCUI_Shop {


UI_TextBox
helpmessage;


UI_Menu

mainmenu;


UI_TextBox
timedisplay;


UI_TextBox
locationdisplay;


UI_TextBox
playerinfo[3];


UI_TextBox
stock;


UI_Menu

weaponarmorlist;


UI_Menu

buyquantity;


Run()


Init()


Update()


Kill()

}

The shop is the series of menus that appear when the player wants to buy or sell equipment and items.  The shop is run by having the Run function called, which takes over message processing just like the player list:

Run() {


Init();


while (1) {



Windows Message Handling (PeekMessage(...), etc.)



Update();



if (UserWantsToLeaveShop()) {




break;



}


}


Kill();

}

Where Init, Update, and Kill simply initialize all UI elements, update them by handling input, and kill them all off when the user is done (respectively).

Battle Engine

UI_CharData

The battle engine has one custom piece of UI: the Character Data display.  The Character Data display (UI_CharData) displays all relevant information on the player characters (between 1 and 3 characters per battle), including the character’s names, their hp/max hp, their ap/max ap, and aggression meters (for a more complete description and mockup, please refer to the User Interface section of the Crazy Cross Game Design Document).

UI_CharData {


void SetMainData(MainData * pMain);


void Draw(x, y, width, height);

}

UI_CharData::SetMainData

In: pointer to main data structure

Out: -

Desc: This function just associates the CharData class with a pointer into the main data structure so it can gain access to information like the player’s name, health, etc.

UI_CharData::Draw

In: pos (x, y) and size (width, height)

Out: -

Desc: This function grabs all relevant information out of the main data structure first, then displays it by drawing all relevant to the assigned area (x, y, width, height).

CCUI_Battle

The entire battle engine UI makes use of the following UI components:

CCUI_Battle {


UI_Menu

main;


UI_Menu

items;


UI_Menu

abilities[3];


UI_TextBox
helpmessagebox;


UI_CharData
chardata;


bool Init();


void Update();


void Kill();

}

CCUI_Battle::Init

This loads in all Battle UI related information and prepares the menus and character data to be displayed.

CCUI_Battle::Update

The main loop of the battle engine will simply call this function to update and draw the battle UI.  The Battle UI will call functions exposed by the main battle engine to send commands (Fight, Use Item, Flee, etc.) for processing.  It will also call Input functions to gain input (all battle engine input goes through this function).

CCUI_Battle::Kill

This kills off all battle related user interface and frees all associated memory.

Art and Video

Art 

All the images and textures in Crazy Cross will be stored in 24-bit Bitmap format and loaded onto an OpenGL surface during the game.

3D Models

All character models in the game will be created with 3D Studio MAX and exported into a .ase file.  This file will be parsed and modified using a program that outputs only the information we need into a .ccm file.  This file will consist of the following information:

Num_Textures #

PATH pathname

Num_Faces #

Num_Verticies #

FACE _ _ _  (3 indicies into a Model Face List)

VERT _ _ _ (3 indicies into a Model Vertex List)

TFACE _ _ _ (3 indicies into a Texture Face List)

TVERT _ _ _ (3 indicies into a Texture Vertex List)

Skeleton ID #
(if this is –1, then it doesn’t use skeletal Animation, and has the following set of data)

Num Animations #  

Num Frames #

_ _ _  (which frame)

_ _ _  (time to frame)

Num Frames #

{


VERT _ _ _  (Verticies)


FACE NORMAL _ _ _ 

}


(if the skeleton ID wasn’t –1, then it will have the following information)


(for every vertex, the # is the number of bones it will be attached to, the first _ is the boneID, and the second _ is the weight)


Vertex Weights # _ _ , _ _ , _ _ 

All this data will be loaded into the game and will take care of all necessary information for textures, models, and non-skeletal animation.  All the character models will be in 3D and all animation frames for them will also be represented in 3D.

Skeletal Models/Animation

Skeletal information exported out of 3Dstudio max, using character studio, and the free third party software Flex-Porter.  From there, we will convert it into our own file format that holds all the necessary information

Num Joints #

MyIndex #

ParentIndex #

Local Rotation (3 floats)

Local Translation (3 floats)

NumKeyframes #

For Each frame..

For each Joint that moves…

Time(1 float)

Joint Index

Parameter(3 floats either angles or translations)

Video

Crazy Cross will make use of the Windows Video functions to load an .avi file and display its frames onto the screen to closely resemble a normal movie file.  These videos will not play music.  Instead, music will need to be played in .mp3 form simultaneously through the music engine if necessary.  The compression scheme of the video files will be in DivX, which will need to be distributed with the project in order for the game to properly play the movies on any computer.

Graphics Engine

All-Purpose

Overview

The All-Purpose part of the graphics engine is designed to encapsulate an easy way of displaying 3D graphics.  To this end, it will be utilizing the OpenGL API in a specific class (henceforth the “GLClass”), which will expose member functions for initialization, termination and access to device contexts (such as the HDC and HWND), leaving the drawing to the specific object that needs to be drawn.

The GLClass is an independent object in and of itself.  In other words, it will have no need to call into any other sections of the game.  It is expected that the only functions that will call into the GLClass will be the game-specific graphics functions, for the purpose of initialization and termination, and the Special Effects, which will need direct access to the HDC for drawing.

The second part to the All-Purpose Graphics Engine is the Model system.  The Model system has a number of structures for use internally, but yields Five major classes, the BaseModel class, the two classes that inherit it, the SkelModel (AKA Skin Class) and LerpModel, the Skeleton Class and the GeomObject class.  All of these classes need access to the File I/O functions in order to properly load the models in from a file.  The model file format is generated using a conversion utility on the ascii output file of a 3D Studio Max model (.ase).

Related to the Model system, yet with a different purpose is the Arena system.  The Arena class is used for both the over world areas that you walk around in(the forests, towns, etc), as well as the smaller battle arena’s you fight in. The Arena class draws upon the File I/O functions to load itself in from a file.  Arenas are constructed using 3D Studio Max and exported as ASCII file (.ase) then run through a conversion utility to get them in an acceptable format.

A fourth part of the Graphics Engine is the underlying camera system.  While the camera does not have anything directly to do with the drawing of the game, game-specific functions will need to use a camera’s position and orientation to know where to draw the world.  The camera has basic functionality as a storage device for its position in the world (using 3D coordinates) and its orientation (using two angles, one for “left/right” and one for “up/down”).  It also has a more advanced purpose, that of scripted sequences.  By supplying a destination and a time to get there, the camera will add the “script” to its queue and interpolate over time its new position.

Finally, there is the latest addition of lighting and shadows.  The shadows are simply a texture of a black dot (using alpha blending to make it look less harsh) that is drawn underneath whatever object is supposed to have a shadow.  A rotation value can be specified as well for the shadow to be tilted in various directions.  Lighting is accomplished using OpenGL’s supplied lighting engine.  Before each scene is drawn, any lights that are specified need to be updated such that OpenGL knows where the light is oriented and what its various intensities are.  Then, internally, OpenGL handles the actual lighting calculations so long as the normals of the model are manually rotated to the orientation of the model before being passed in.

Data Structures

The GLClass is the central object of the Graphics Engine that must be included in the main data structure of a game.  It contains several internal copies of device contexts, including the GDI Device Context, the OpenGL Rendering Context, the Window Handle, and the Application Instance’s Handle.

It also stores several statistics about the window created by the CreateGLWindow function, including window size, whether or not it is full-screen, and whether or not the window is currently “Active” (i.e. has focus) so that it knows whether or not to draw.

Finally, it contains member functions for Initializing OpenGL to be run in the application’s instance, as well as the function to create a window (which stores all of the properties including the device contexts during the window’s creation), the function to destroy that window once it’s been created, and finally a function to reinitialize OpenGL when the window has been resized.  Because the GLWindow needs a WinProc, it is supplied one in private, the only portion of the callback that actually gets used is handling the activated message
class GLClass
{

private:


HDC

hDC;

// Private GDI Device Context


HGLRC

hRC;

// Permanent Rendering Context


HWND

hWnd;

// Holds Our Window Handle


HINSTANCE
hInstance;
// Holds The Instance Of The Application

DEVMODE
m_DMsaved;
// The current statistics of the window 

// (size, bit depth, etc.)


int

m_width;
// The window's current width


int

m_height;
// The window's current height


bool

fullscreen;
// Fullscreen Flag


bool

active;
// Window Active Flag (Initially “true”)

public:


// Variable Access Functions for Fullscreen, Size, Active


// Functions to Initialize OpenGL and Create/Destroy an OpenGL window


// Functions to Resize the window

};

A TexPoint at current contains nothing more than an integer index for use in indexing into a list of texture coordinates.

struct TexPoint

{


int index;

};

A Vertex contains an x, y, and z floating point value for a point or position in 3D space.

struct Vertex
{


GLfloat v[3]; //point of vertex in model coordinates

};

A Frame contains two arrays of 3D Points, one for vertices and one for face normals.  It is designed to act as a “key-frame” holder for use in animation since animation consists of interpolating points from one frame to another.  There may be any number of frames in a model, specified when it is loaded in.

struct Frame
{


GLPoint3D *vertexArray;


GLPoint3D *faceNormals;

};

A Face contains a link to a texture, 3 texture coordinate points, and an array of 3 unsigned integers (the “Triangle”) to act as indices into a vertex table.  The way that textures are represented in OpenGL are as integers, so the link is an integer value.  The indices into the texture coordinate array directly correspond to the indices into the vertex index array.  That is to say, index 0 of the texCoords array will give the texture coordinate for the point at index 0 of the vIndex array.

struct Face
{


GLuint tIndex;//index into the model's texture list of the texture to use


TexPoint texCoords[3]; //the texture coordinates for the face


Triangle vIndex; //index into current frame's vertex array (the triangle)

};

A Material is, at current, only an array of indices to OpenGL textures.  Because textures are represented as unsigned integers, the array is made up of them.  Also, a variable is necessary to keep track of how many textures are currently in use by the Material.  The purpose of the Material is provide a table associated with an object that the object’s drawing routine can index to select a texture or other property.

Note: It is possible to add more properties here about how an object reacts to light, however it is unnecessary for the purpose of the game.

struct Material
{


int
textureCount;  //the number of textures used by an image


Gluint *textureArray; //the array OpenGL will supply values for

 







 //(that we will index into with the faces)

};

Animation

Animation is dealt with in one of two ways, depending on whether the model uses our older linear interpolation key-frame system (henceforth known as the lerp method) or the slightly more complicated skeletal animation system.  There are advantages to both, size and portability across models with the skeletal system, for example, you only need to make one use item animation with the human skeleton, and suddenly all human characters can perform that animation.  While other models are fairly small and are easier to animate without a skeleton, like our dead fish.  Its fairly transparent, since they both use the virtual functions from the base class to animate.

A Lerp Animation contains nothing more than a list of key-frames and the times that it takes to run between them.  To keep it simple and indexable, these lists are simply stored as dynamic arrays of unsigned integers.  Finally, there needs to be an integer specifying how many frames are in the animation.

Note: the timeBetweenFrames array corresponds directly to the frameList list.  Specifically, an index into the time array will return the time it takes to run to the frame at the same index of the frame array.  Therefore, typically the first index (0) of the timeBetweenFrames array will have a value of 0, so that the animation is ever changed, it will jump to the new one instead of interpolating to it.

struct Animation
{


int 
  numFrames;


unsigned *frameList; //array of order frames in animation are to be used


unsigned *timeBetweenFrames; // array of "times to move next frame"

};

A SingleAnimation is essentially an Animation struct with only one frame.  It is designed to encapsulate an index to a frame and a time to get to that frame without using dynamic variables in order to increase speed and efficiency.  It is possible to make a list of SingleAnimation structures to replace an Animation structure.

struct SingleAnimation
{


unsigned int nextFrame;


unsigned int timeToFrame;

};

The Model class acts as a storage device that contains drawing/animation information about an object.  First and foremost, it is directly associated with a model file (“.CCM”) by pathname so that we can call the load and unload functions multiple times thereafter and not have to specify the path each time.  Therefore Model needs access to the File I/O library to load in files.

A Model contains several important variables involving the properties of a 3D object.  It can have one of two sets of data, depending on how it was animated.  The lerp models include the model’s vertices at each key frame of animation, , and the model’s animation number. These all need to have variables associated with them to keep count of how many there are since they are all dynamically allocated arrays and we don’t ever want to access past the ends of them.  The skeletal model is somewhat more complicated, since each vertex now holds of a list of bone weights and a pointer to the Skeleton, which contains all joints/bones and that skeleton holds matrix information, as well as the animations.   Both models have the basic info, like the model’s faces (indices into the vertex table) and the model’s texture information. 

class BaseModel
{

private: 


char
modelFile[MODEL_PATH_LEN]; //the pathname of the model


int  faceCount;  

//the number of faces (and face normals)


Face *faceArray; 

//the faces of the model


int  vertexCount;

//this variable is constant for all frames


int  
numTVertices;

//the number of texture vertices in the model


Vertex *textureCoordinatesList; //an array of the texture vertices


Material material; 

//contains texture array for model

Protected:


Virtual Animate() = 0;  //functions to animate the skin/model

public:


//member access functions for the animations, vertices, faces


//load, free, and draw functions

};

class LerpModel: public BaseModel

{

private:


int 
frameCount;

//the number of key-frames to be stored for

//animating the object


Frame 
*frameArray;

//the array of key-frames themselves


int 
animationCount;
//total number of animations the model has


Animation *animationArray;
//the array of actual animations

};

class SkelModel: public BaseModel //This could also be called a ‘Skin’ 

{



struct BoneWeight



{




uchar boneID;  //which bone




float weight;  //the weight of that bone



}




struct Vertex



{




list<BoneWeight>WeightList;




float location[3];



};



Skeleton * MySkele; //Which skeleton to use to animate this //model/skin and some other variables to help make animation easier.

};

class Skeleton
{


//
Animation key-frame information


struct Keyframe


{



int * JointList;  //which joints moved



int NumJoints; //how many



float time;
// in milliseconds



float * Rotations; //the rotations associated with the joints


};


//
Skeleton bone joint


struct Joint


{



float localRotation[3];



float localTranslation[3];


// The absolute matrix is basically the original transformation of the joint


//  The relative matrix is the transformation of a joint from its parent


Matrix absolute, relative; 



Matrix final;



int parent;


};


int numJoints;


Joint *pJoints;

}
A GeomObject is a geometrical object (e.g. Lou) that the game loads in and animates.  It is going to be the base object that most of the game’s object classes will inherit.  Its primary purpose is to hold the object’s coordinates, orientation, and size in world coordinates as well as the current frame of animation to draw so that it can completely handle the drawing process.

In order to obtain the proper animation information and the proper frame information, a GeomObject needs to be associated with a model during initialization.  Because multiple GeomObjects can use the same model, the Model object will be linked to via pointer instead of creating one per GeomObject.

There are several properties to animations that GeomObjects will need to keep track of.  First, there’s the index number of the animation it is currently running so that it can index into the animation list of its model and know what frame to ultimately arrive at.  Then, perhaps most importantly is the Frame representing the frame of animation the object is currently in.  This is the object in which all of the linear interpolation or skeletal rotations will be done and the model will be drawn from.  Upon each new key-frame of animation, the key-frame coordinates will be copied into the currentFrame and a timer will be set for moving to the next key-frame.  As the update animation function is called, linear interpolation will move the points in the currentFrame closer to the points at the key-frame specified by the nextFrameInAnimation variable, Skeletal models will rotate joints based upon their frame information and then move the skin vertices with those matrices, with the new position being a combination of the weights of the different joints that a vertex is attached to.  Note that the timer needs to be stored as two variables, one for keeping track of the last time that the object was moved, and one for how much time is left to move in the current frame.

To ease the process of animating the object, whenever a new animation is started, a queue of individual indices to frames is filled in so that when each frame is reached, the front of the list is removed and the old frame is done with.  There are also a couple of useful variables for keeping track of whether o r not the animation is supposed to loop when it is finished, and whether or not the animation should be paused (this essentially halts the timer and reinitializes it when the animation is un-paused).

class GeomObject
{

private:


BaseModel
*model; 
//a pointer to the model this object represents


float
scale;

//a constant to scale the image by


Point3D position; 
//position of the model in the world


Point3D rotation; 
//orientation of the model in the world


Frame currentFrame;
//the frame that we draw (not necessarily

// a key-frame if we are in-between frames)


int  currentAnimation;


bool m_bCurrentAnimationLooping; 


bool m_IsAnimationPaused;


list<SingleAnimation> currentAnimationList;


int nextFrameInAnimation;


int timeRemainingInAnimation;


int timeLastAnimated;

public:


//access functions for model position and direction


//access functions for associating/dropping model


//access functions to get information about animation frame


//function to draw model


//functions to update/alter current animation

};

The Arena class contains all the information necessary to display a single model file with no animation needed.  That being the case, it is acceptable to use an OpenGL-defined property called display lists, where the object is pre-drawn ahead of time and at rendering time the list will automatically draw the object with much more efficiency than normal.  This also allows the Arena freedom to de-allocate the faces array and vertices array right after the list is first built to not take up unnecessary memory space.  The only thing that will need to be kept is the number of textures and the texture index array itself.  Also, in addition to the index of the display list itself, it is prudent to make sure that the list was successfully created before calling the draw so there is a variable which is set when the list is made.

class Arena
{


int

numTextures;
//to keep track of texture number


GLuint
*texture;

//Storage For our Textures


Face

*faceArray;

//Face info temporarily goes here


Vertex
*vertexArray;
//Vertex info temporarily goes here


GLuint
dispList;

//An index to an OpenGL display list


bool

listExists;

//Whether or not the list is made yet


//Private function to create a Display list for drawing

public:


//Functions for loading, emptying, and drawing

};

The CamPosObj serves to hold five important pieces of information for the camera object, namely 3 variables for the position in 3D space and 2 for the angles to orient the camera’s direction.  It is made as a class with its members private to all objects except for the cameras so that it acts as an internal object.

class CamPosObj
{

private:


//the five most important variables to a camera, 


//including the position and orientation


float

xpos;


float

ypos;


float

zpos;


GLfloat
alpha;


GLfloat
beta;

public:


//define all friendly classes

};

A CamScriptObj holds the information that goes into a list so that camera movements may be stacked on top of one another and executed one after another.  To accomplish this, we need keep track of only two variables: the camera’s destination position and the time that it takes to get to that position.  It is made as a class with its members private to all objects except for the cameras so that it acts as an internal object.

class CamScriptObj
{

private:


//this is everything we need to pass into our Camera Script List


int

timeInterval;


CamPosObj
m_cPos;

public:


//define all friendly classes

};

A Camera class is the main object in the camera movement section of the Graphics Engine.  At any point, a camera will have its current position and orientation, a possible destination position and orientation, a list of movements that it is supposed to perform, whether or not it is paused, and how much time there is in-between moving from the current position to the next position.  Mostly, managing a camera is handling tricky variable manipulation.  Were it not for the ability to slide the camera down predetermined paths, it would contain nothing more than a position and orientation.  A nice helper function is be to adjust the angles of the camera to “look at” a point in 3D space.

Finally, the cornerstone of the Camera function is the UpdateCameraMovement function, which serves to use the time variables to linearly interpolate the camera’s position to its destination position.  It is vital that when a Camera is used, UpdateCameraMovement be called before drawing, therefore it is a function that the game-specific “drawAll” function will need to call on.

class Camera 

{

private:


//variables to keep track of proper linear interpolation


int
timeLeftInMove;


int 
timeLastMoved;


//the camera position that our camera may be transitioning too


CamPosObj m_cDestPos;


//the position our camera is currently at (and displays from)


CamPosObj m_cPos;


//our camera script list (loads up a new script when old one finishes)


list<CamScriptObj> m_ScriptList;


//variable to keep track of being paused or not


bool isPaused;

public:


//access function to know whether or not the camera is currently paused


//access functions to get at our camera's position


//access functions to set our camera's position


//Add a CamScriptObj to our list for sliding the camera to a new location


//Add a CamScriptObj to our list that automatically moves the camera


//Some quick camera interaction functions


//Important function that updates the interpolation of the camera


//Function that takes a position to have the camera “look at”

};

A Cscript is a solely internal representation of an array of CamScriptObj variables that keeps track of how many of those variables there are in a given script.  It is made as a class instead of a struct for the simplicity of having the Constructer initialize the data to NULL and so that no class other than CameraScript would ever have access to its data.

class CScript
{


int numMovements;


CamScriptObj *CSO;

public:


//constructor initializes variables to NULL


//specify friend class CameraScript

};

A CameraScript is designed for pre-scripted movement of the camera, typically for an opening animation.  By storing an array of Cscript objects, we are effectively storing an array of scripts that the user can access by index when they call the “RunScript” function.  It also holds the number of scripts in this array because the array is dynamic and it should never allow the user to accidentally access beyond the end of the array.

The CameraScript object will need access to the File I/O handler because it will load in the scripts from a text file.

class CameraScript
{


CScript
*Scripts;

//an array of internal CScripts


int

m_iNumScripts;
//and the number of them

public:


//Functions to load camera scripts, run them, and empty them

};

Functions

GLClass Functions

The important Init function, this function serves as a wrapper to call multiple OpenGL functions.  Specifically, it enables 2D Textures, sets the blending function, enables depth buffering, sets the depth calculation function, sets the perspective correction function, and enables point smoothing.  This is also where, were there lighting, lighting would be enabled.  This function is called within the CreateWindow as well, and unless CreateWindow is not called, should not need to be called anywhere else in the code.

int GLClass::InitGL(GLvoid);

Initializes any OpenGL extensions that are available at runtime, it calls a Windows OpenGL interface function that polls the video card for access to certain “extensions” or extra functions.  If those are extensions are available, it returns success and associates them with static global variables which the user may then call and treat as though they were functions.

int GLClass::SetupExtensions();

The CreateGLWindow function serves as an abstraction device from standard Windows functions.  It handles all of the standard initialization, including registering a window class and setting up the CreateWindow parameters.  For parameters, it takes a text message that is to appear in the title, the width and height of the window, the bit-depth of the screen, and whether or not to make it go full screen.  It then polls the device for whether or not the card supports the resolution it will attempt to change to if it is going full screen.  If that fails, the whole function returns FALSE.  Upon success, it continues on to change the monitor’s resolution.  If fullscreen was attempted, a window will be created without the standard windows border, however otherwise it will have the title bar and border.

Next, it stores the screen’s old information so that when the window is eventually destroyed we can properly restore it.  Then, it creates a device context and associates it with the window, properly grabbing the bit depth of the screen’s new resolution.  This context is run through several OpenGL functions to make it the main device context and create a rendering context out of it.  Once this is all accomplished, OpenGL is ready to be initialized, so InitGL is called.  The CreateGLWindow returns success if none of these functions fail.

BOOL GLClass::CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag);

The function to destroy the OpenGL window and free resources, it first checks to see if the user was in full-screen mode and, if so, attempts to return them from that using the Windows-supplied ChangeDisplaySettings function with the parameters it had stored before going fullscreen during window creation.  Next, it deletes the OpenGL rendering context, the main window HDC, the window itself, and finally un-registers the window class.

GLvoid GLClass::KillGLWindow(GLvoid);

The function reinitializes OpenGL’s projection mathematics to incorporate a different width and height for the window by calling OpenGL-supplied Perspective correction functions.

GLvoid GLClass::ReSizeGLScene(GLsizei width, GLsizei height);

Toggles the OpenGL window between Fullscreen and Windowed modes by destroying the window and then re-creating it.  New width, height, and bit-count variables must be supplied in case the window is to change size as well.  It is more or less a wrapper for KillGLWindow and CreateGLWindow, returning success if both functions succeed.

int GLClass::ToggleFullscreen(char* title, int width, int height, int bits);

Takes a parameter of a pathname to a bitmap to be loaded in as a texture in OpenGL.  Needs access to the File I/O handler to confirm whether or not the file exists.  First it will call the AuxGL library-supplied load bitmap function to efficiently load the bitmap’s bits into memory.  If that is successful, then it calls the OpenGL function to make room for a texture in video memory, then supplies the bits for that texture.  Finally, it frees the file that it loaded since the bitmap information is now stored securely in video memory and it can return the OpenGL-supplied index to that texture.

Gluint LoadGLTextureFromFile(char *pathname);

Model Functions

The model’s load function simply takes a string containing the pathname of a “.CCM” model file and uses the File I/O tool to load it in.  The function also takes a second parameter: a scale value that acts as a percentage to load the file in from.  This is done to adjust the initial size of the model once in case the size in the model file is inconsistent with the game, which is more efficient to do during loading than by changing the model’s scale value each time during drawing.  The function returns 1 if successful in loading all of the model’s information.

int 
Model::Load(char * filename, float scale = 1.0f);

The model’s empty function is a wrapper for calling delete on all of the dynamically allocated data in the model.  It is also called in the model’s destructor in case the memory forgot to be freed manually.

void 
Model::Empty();

The model’s draw function takes ten variables important to the drawing of the object in 3D space.  It needs three variables for the object’s position, three for its rotation about each of the three axes, and three for its scale in the three major directions.  Finally, because the Model itself contains no information about the specific vertices of the frame that it is trying to draw, it needs access to one by pointer, assuming that the Frame it receives will be compatible with the Model itself.

The drawing process is a simple one, using OpenGL primitives and having OpenGL handle all of the heavy math.  It runs through every index in the model’s face list and sets the current texture to the texture associated with the face, then uses the indices to set a vertex according to the vertex in the Frame that was passed in.

void 
Model::Draw(
GLfloat xpos, GLfloat ypos, GLfloat zpos, 




GLfloat xrot, GLfloat yrot, GLfloat zrot,




GLfloat xscl, GLfloat yscl, GLfloat zscl,

Frame * currentFrame);

GeomObject Functions

The UseModel function’s basic purpose is more or less as an access function that associates the Object’s model with a Model that should have already been loaded in. This function then looks at the Model’s vertex information so it can dynamically allocate the proper size in the GeomObject’s currentFrame variable.  Finally, it initializes the object’s current frame to be the first frame in the model’s animation data.  This function will fail if the GeomObject already was using a model.

int
GeomObject::UseModel(BaseModel * pModel); 

The DropModel function sets the model pointer to NULL and frees any allocated information in the currentFrame variable. It also empties out the model’s animation queue since the animations are no longer applicable.  This is essentially the GeomObject’s terminate function, although the model can be re-associated at any point after this function is called.

void
GeomObject::DropModel();

The internal (private) animation function queues up a number of frames of animation by using the parameter as an index into the animation array of the model to get at these frames.  A second variable is passed in so that we can initialize an internal looping variable depending on what was desired.  Finally, the function initializes all of the time variables now that a new animation is beginning.

void 
GeomObject::_Animate(int whichAnimation, bool looping);

The Animate function is a wrapper to call the internal animation function with the looping variable set to false.

void
GeomObject::Animate(int whichAnimation); 

The LoopAnimation function is a wrapper to call the internal animation function with the looping variable set to true.

void
GeomObject::LoopAnimation(int whichAnimation);

The update animation function of GeomObject updates the vertices, either skeletally or by lerp.  If the loop variable has been set, then it will loop back around to the first key frame, otherwise, it will stay at the last key-frame’s position.  Because it runs on a system involving time and not game cycles, it is acceptable to call it during the game-specific drawing function.  Besides, it would just be unnecessary calculations to call this function more than once between drawing.

void 
GeomObject::UpdateAnimation();

The StopAnimation function empties the model’s animation list, leaving the model at whatever frame it was on when StopAnimation was called.

void 
GeomObject::StopAnimation();

PauseAnimation sets a variable that prevents the model’s currentFrame from being changed when UpdateAnimation is called.

void 
GeomObject::PauseAnimation();

The UnpauseAnimation function both clears a variable preventing the currentFrame from being changed during UpdateAnimation and reinitializes the timer variables so that the UpdateAnimation does not know time passed between the time the object was paused and the time it was un-paused.

void 
GeomObject::UnpauseAnimation();

GetCurrentAnimation is an access function to get the index of the animation that is currently in progress in case game-specific functions depend on which animation is currently running.

int
GeomObject::GetCurrentAnimation();

ChangeCurrentFrame is a low-level function that automatically copies a key-frame from the current animation to the currentFrame variable.

void 
GeomObject::ChangeCurrentFrame(int newFrame);

The Draw function serves mostly to redirect the object’s drawing to its Model’s Draw function, making sure to pass in all of its internal variables regarding position, orientation, scale, and its current frame.

void
GeomObject::Draw();

Arena Functions

The BuildDisplayList function of the arena is what would typically be the draw command of most other objects (such as models).  It consists of calling OpenGL primitives and associating them with textures, then specifying texture coordinates and vertex coordinates in a loop until the entire arena is drawn.  However, at the beginning an OpenGL function to create a “display list” is called and when the drawing is completed, the function to close off the list is made and the list is assigned (as an integer) to a variable.  From this point on, whenever the glDrawList function is called we can pass it this list index instead of making each draw command again and it will render it with much more efficiency than normal.  This is acceptable to create at the start since the arena will not change throughout the course of a game.

void
Arena::BuildDisplayList();

The Arena’s Load function needs access to the File I/O handler so that it can read in the information from the file.  The file format is the same as the model files, except there is no animation section.  The load function will allocate the Face array, Vertex array, and texture array to the proper size and then build the display list.  Because after the display list is made it is no longer necessary to keep the face and vertex array information around, those two variables will be immediately freed.  If the file loader encounters any problems (such as with the memory allocation) it will return FALSE, otherwise it returns TRUE.

int 
Arena::Load(char * filename); 

The Arena’s Empty function makes sure that everything allocated in the class is freed and unallocated (in the textures’ cases).  It also checks to see if a display list has been made and, if so, calls the OpenGL de-allocation function for it.  This is called in the Arena’s destructor in case the user forgets to call it manually.

int 
Arena::Empty();

The Draw function checks to see if the display list was properly built, then calls the OpenGL glDisplayList to render the list.

void 
Arena::Draw();

Camera Functions

SlideCamera creates and adds a CamScriptObj to the camera movement list that contains destination information for the camera and a time interval in milliseconds that it will take to move from its current position to that destination.

void Camera::SlideCamera(float X, float Y, float Z, GLfloat A, GLfloat B, int timeInterval);

Add a CamScriptObj to our list that automatically moves the camera to a destination position/orientation.  This script will run when it is reached in the queue order and is pulled out.  It has the same functionality as calling SlideCamera with a 0 time interval only is slightly more efficient because it doesn’t have to account for that.

void Camera::SetCamera(float X,float Y,float Z,GLfloat A,GLfloat B);

The StopCamera function removes all CamScriptObjs from its destination list and halts the camera where it is.  If the user needs the camera to jump to a spot instantaneously instead of just adding to the movement queue, this function needs to be called first to make sure no other scripts are run first.

void Camera::StopCamera();

PauseCamera sets a variable that halts the camera from being moved from its current position in the UpdateCameraMovement function.

void Camera::PauseCamera();

The UnpauseCamera function undoes the effects of the PauseCamera function.  Specifically, it clears the variable halting the camera from its movement in the UpdateCameraMovement function and reinitializes the time variables so that the update function doesn’t realize any time elapsed between the time the camera was paused and the time it was un-paused.

void Camera::UnpauseCamera();

The UpdateCameraMovement function is an important function which updates the interpolation of the camera whenever it is called.  It begins by calculating how much time has passed since the camera was last updated and therefore knows how much to interpolate the camera along its current path.  If the camera has reached the end of its current script, it will grab the next one from the camera script queue and continue to interpolate based off of the new destination position.  If there are no more scripts left in the queue, the camera is left still at the position it was last at.  UpdateCameraMovement needs to be called by the game-specific Graphics Engine’s draw function right before drawing so that the true position of the camera is reflected before each rendering cycle.

void Camera::UpdateCameraMovement();

The LookAt function takes a position in 3D space (represented by three integers) and alters the Alpha and Beta of the camera to “face it.”  This is accomplished through some simple trigonometrical calculations.

void Camera::LookAt(float X,float Y,float Z);

CameraScript Functions

LoadScripts uses the File I/O handler to temporarily load a text file of scripts.  It begins by allocating an array of scripts according to the first number in the file, then for each script it loads in two lines of information.  If the function fails, it returns without accomplishing anything.

void CameraScript::LoadScripts(char * filename);

The RunScript function takes a reference to a camera object and an index into its script array so that it can add the indexed script elements to the camera’s script queue.

void CameraScript::RunScript(Camera & cam, int whichScript);

EmptyScripts is a termination function that frees the allocated script array.  This automatically is called in the destructor just in case the user forgot to free the scripts manually.

void CameraScript::EmptyScripts();

Lighting Functions

PushLight adds a light to the list of existing lights that has the properties of ambient intensity, diffuse intensity, and position as specified by the parameters (note that the position can also stand for direction depending on its values, see OpenGL’s implementation of lights for more details).  The most recently pushed light is the first one that will be removed if a light is “popped.”  Also, note that there cannot be more than 8 lights under OpenGL’s implementation, so this function will enforce that restriction.

void LightSystem::PushLight(Point3D Amb, Point3D Dif, Point3D Pos);

If there are any lights currently in the light system, this will remove the one that was most recently added.  Because LightSystems are not resource-intensive, this function need only be called at the end if the user wanted to pre-empt the destructor which will remove all lights manually.

void LightSystem::PopLight();

EnableLightsGL is, more or less, a switch statement that, depending on how many lights are currently in the light system, will call each OpenGL function necessary to enable that light.  This needs to be called once whenever the lighting may have changed to a new system.


void LightSystem::EnableLightsGL();

DisableLightsGL is, like EnableLightsGL, a switch statement that calls an OpenGL-specific function for each light that needs to be turned off.  It is safest to call this function right before it is possible that the lighting system may change as any leftover lights will spill over.


void LightSystem::DisableLightsGL();

ActivateLightsGL is the function that needs to be called every time a scene with lights is drawn.  It is what establishes the lights’ current statistics and positions.  If this is not called every time the screen is drawn, the light’s position will be moved for every frame and cause other things to go awry.  It uses the existing statistics of the lights already stored in the system so it requires no parameters.


void LightSystem::ActivateLightsGL();
Game-Specific 

Overview

The Game-Specific Graphics Engine is easy to implement since every graphics object can be represented as a GeomObject or an Arena, both of which already have their own draw functions.  The remaining portion of the graphics responsibility is to make sure the camera is in the right place and draw things in the correct order.

In order to draw the world, the graphics must first be loaded from files, therefore there are a couple of functions that are utilized to interface with the File I/O that load these models in and create their textures.  Consequently, there are functions that free the resources allocated with all of the game’s models as well.

The camera’s position is based upon an interpolated view and position between two tiles, and is explained further in the Camera Movement section.

Therefore, the game-specific section of graphics needs to interface directly with the all-purpose graphics so that it can use the draw functions supplied by the GeomObjects and Arenas.  It must also draw upon the File I/O to make sure that all graphics objects are loaded and freed at the proper initialization and termination points of the game.  When the tile templates, ship templates, and projectile templates are loaded in, they should take care of associating the GeomObjects with the model objects themselves, so it is important that the model objects are already loaded.

Data Structures

Camera

GeomObject

Arena
Functions

A function to be called in the game loop’s initialization phase, LoadArenaFromFile takes a pathname to the arena that needs to be loaded.  Because this arena is independent from the game’s map, only one of these ever needs to be created and certainly only one needs to be loaded at a time.  If the arena is loaded successfully, the function returns TRUE, FALSE otherwise.

int LoadArenaFromFile(char *arenaName, Arena *arena);

UnloadArena is more or less a wrapper for calling the arena’s unload command.  It returns FALSE if it encountered any problems.

int UnloadArena(Arena *arena);

The DrawAll function is very important in that it draws the game to the client’s screen.  It works in a straightforward manner, first calling the OpenGL routine to clear the depth buffers and initialize the frame to a black background.  Next, it does a switch statement on the game’s current camera view, and, depending on which case it is, calls the appropriate “MoveCamera” function.  It is possible that the current camera view is none of the three pre-defined ones, and in which case the UpdateCamera function will be called in case it is a pre-scripted camera movement sequence that is taking place.  Then, the OpenGL matrix stack is given a rotation by the main camera’s alpha and beta fields, then a translation by its coordinates in 3D space.

Once the world is set up properly, the OpenGL glPushMatrix function is called to store this information away so that after any other objects are drawn, we can glPopMatrix and return to this point.  Immediately after, the current arena’s draw function is called to draw the space background and little planetoids.  Then a loop is run on each character in the game’s object list, calling the update animation then the draw function of each character’s GeomObject along the way.  Because OpenGL handles its own depth calculations, we do not need to worry about any of these objects appearing on top of one another in an improper order.

int DrawAll(MainData *theWorld);

Experimental - BSP Trees

Overview

After initial tests where the levels and arenas were rendered with only depth buffering to sort out the polygon ordering, we discovered problems with alpha blending and transparency.  The levels need to have their polys sorted each frame relative to the camera position in order for multiple levels of transparency to work.  The quickest way to do this each frame is with a Binary Space Partition tree (BSP tree).  The basic idea behind the BSP tree is as follows:

1. Pick a “root” poly, and group all other polygons as either being “in front” or “behind”.

i. Split any polys that cross the plane defined by the root poly into two polys, one in front and one behind.

ii. Put any coplanar polys in the “behind” list.

2. Recurse on each new list (in front and behind).

The tricky part in this rather simply outline is the picking of the root.  One method that is currently in use is to select 6 root candidates and see how many polys would be split by each root.  Doing that for each “root” node (remember, at each recurse, a new “root” has to be chosen), runs fairly quickly, but doesn’t always produce the best results.  Since we are always going to be traversing the entire tree (and not just one path down the tree), we don’t really care about the tree’s depth, so that doesn’t factor into root selection.

Eventually the initial list will be empty, and the tree will be built.  To draw a scene, you just traverse the tree in the following order:

1. If the camera position is in front of the current root polygon

· Recurse on the “behind” node

· Process the Root node’s polygon

· Recurse on the “in front” node

2. If the camera position is in back or on the current polygon

· Recurse on the “in front” node

· Process the Root node’s polygon

· Recurse on the “behind” node

Unfortunately, initial tests have yielded an unacceptable increase in poly count.  For example, a 1000 poly level (Bluemond) becomes a 5000 poly level after an average run.  A new utility is being created that will allow manual selection of root polygons to facilitate better tree creation.  The hope is that with good root nodes, the level will be divided into the least number of polygons possible

Artist Instructions

The artists will use 3D Studio MAX to create their character models and Photoshop to create their textures.  All textures in Crazy Cross will be 24-bit non-palletized Bitmaps in an uncompressed file.  The resolution for these images will not exceed 256 x 256 resolution.  All Bitmaps will be stored in .bmp format so all compression is done by .bmp compression and no extra compression will be done for Crazy Cross.  Filenames for these textures will be in a simple and easy to follow format.  We also need the artist to use the same humanoid skeleton for all humanoid models, or it will defeat the purpose of using skeletal animation.

Sound & Music

Overview

Properly playing Sound & Music in Crazy Cross is a simple task thanks to the Xaudio SDK.  Loading is performed by creating a Song or SoundEffect object, which contains a path of the sound file and a link to the AudioClass that will play it.  Internally, Xaudio handles the loading of files just before play by running the InputOpen function of the SDK, passing in the sound’s filename as a string.  To actually play the sound once it’s been created, simply call the Song or SoundEffect’s Play() function and it will redirect itself to an available AudioPlayer to begin.  Because audio is handled in a separate thread, there is no need to deal with “updating” the audio while it plays.  Sound and Music files must be in either .mp3 format, or .wav format, but they do not technically have to have those exact extensions on the file. 

Xaudio automatically links to DirectSound and therefore all of the hardware mixing is done internally.  This keeps the process transparent to the designer so they will not have to deal with it.  The one caveat is that a certain number of audio channels must be specified upon the audio classes creation, so only that number of channels can possibly be mixed at once.  The more channels that are allocated, the more overhead the music code brings to the program.

DMA is another featured handled by DirectSound (and therefore Xaudio) that will be abstracted from the designer.  This will not need to be dealt with directly.

The AudioClass is given a set number of “audio channels” upon its creation that it can use to play music and sound.  The first channel is reserved for music (which has potential to loop) and the remaining channels are left for the sound effects.  However, the more channels that are allocated, the more overhead the audio code brings to the program.  An optimal number of channels is around eight, since sound effects are typically short enough that AudioPlayers free up almost immediately after the sound is played.

Thanks again to the Xaudio API, sound panning is available.  The user need only specify how much sound to play out of one speaker, and how much sound to play out of the other when they call the SoundEffect file (panning is restricted to sound effects only).  This is accomplished with a variable that is between negative 1.0 and 1.0, and plays with a bias to the left if negative and to the right if positive.

Xaudio’s internal priority is set to “normal” so that the sound thread does not obstruct the game’s other threads.  However, sound effects also have a priority variable.  If a sound has enough priority, then even if all sound channels are in use when the sound is called to play, it will stop one channel at random to start playing the sound with priority.

Finally, all credit is due to the Xaudio SDK for allowing us to play music and sound files efficiently while helping to keep the process very abstracted from the designer.  Again, it should be noted that if the patent issues regarding MP3 are not resolved, we will have to abandon Xaudio in favor of another player that supports the Ogg Vorbis file format.

Sound Engineering Instructions 

The in-game sounds should all be high quality stereo wav or mp3 files.  This means 22,050 Hz or 44,100 Hz with 16 bits per sample for wav files, or 112kbps or higher for mp3s.  The game will pan mono sounds left and right as necessary.  Also, the individual sound files have to be at least 1.5 seconds long for the sound code to recognize them.  If the sound is shorter than this length, add silence at the end of the file to compensate.  Any major sound package can be used to create the sound, or they can be taken off of library CDs, so long as they end up in the above format.  The sounds will go in the sounds sub directory in the project’s root directory.  The music should be MP3 format, utilizing a minimum quality of 112kbps.  The files can be Stereo or Joint-Stereo.

Voices

In each cut scene and full motion video that has story dialog will also have a voice being played over it.  Each line of dialog will be considered a sound effect and will be treated as such.  The dialog will be saved in the wave sound file format.  In each cut scene file, each dialog to be played in that cut scene will be specifically timed.  The same method will be used in the script files for the full motion videos.   

Level-Specific Code

While Crazy Cross is a game based heavily on the dynamic content of its levels, there is no actual level-specific code.  Instead, see the section on the scripting engine to understand how levels will be able to differ from each other.  All dynamic content is specified in text files that make up the game’s script files.  The scripting engine itself takes these script files (which are each associated with a single level of the game) and actually runs the code to affect the game.

Experimental Features

Skeletal Animation

How it Works

We decided to attempt a skeletal animation engine this semester for several reasons.  First of all, the experience of working on a skeletal animation engine will be very useful, as we know it’s used out in the industry, like in Half-Life and other, more recent 3D engines.  Second, the current linear interpolation method has a serious size disadvantage. If a character has the same basic animation, but with a different model, it will use a separate set of key frames.  Also each key frame takes up a set of vertices that are the same size as the model.  If we want smooth animations and detailed models, we would be taking up a lot of memory.   And lastly, with a skeleton to base it off of, we can now place weapons in our character’s hands, simply by having them undergo all the same transformations as the hand/wrist bone.  

How does it work? Well, we need two things, a skin and a skeleton.  The skin is not unlike the basic model used for Lerp, in that it contains textures and vertices.  In addition, the skin now has, for every vertex, a set of weights for a number of bones.  The skeleton is a rather basic underlying set of vertices.  The main difference from it and a normal model is that each vertex is actually a bone or joint, and remembers who its parent was.  When the parent joint is translated and rotated it remembers its final transformation matrix. Then the next joint in the hierarchy calculates its final transformation, and then concatenates it on to the end of the parent's matrix.  Traveling down the chain like this, the entire skeleton gets moved.    How does this relate to the skin?  Well those weights in the Skin correspond to a set of bones, on a one for one basis.  In a simple skeleton animation, each vertex is only attached to one bone, and undergoes the same transformation as that bone to reach its new location.  We are using what is called blended skeleton, which performs multiple transformations; one for each bone that the vertex is attached to, and then takes the sum of those locations, weighted with the associated weight in the weight list.  It’s a little slower than simple skeletons, but it looks better and its how 3DSMax does its skeletons.

For Example:  Vertex 1 is attached to bone Joints 9 and 11, with weights of .3 and .7 respectively


Therefore, V1-New = V1 * J9.Matrix * J9.weight + V1*J11.Matrix * J11.weight

Its Risky

Skeletal animation for us will be a new, and somewhat unknown quantity for us.  While we do plan for it and have researched it before deciding to program it, we also know that we may not be able to get it to work.  It might not work at all, or be to slow to be of any use.  If this is to be the case, then we will need a backup plan to not cause construction of our game to come to a screeching halt.  In such a case where the skeletal animation fails for us, we will switch over to the lerp method for all models and animations.

Credits

Some sections of this document are modified versions of the GDD and TDD section from a previous DigiPen game: NullSpace.  Credit is due to the members of NullSpace who are not currently working on Crazy Cross, namely Josh Hobbes, Amadou Savadogo, and CJ Clark.

A large amount of credit is due to Chad Schonewill for his script that would serve as the foundation (and majority) of the final Crazy Cross script.  It was his creative ideas that would shape the game’s content to what it became.

Finally, other credit is due to the people mentioned in the external code section of this document for their work on code and libraries that Crazy Cross will utilize.

Financial Analysis

	COSTS
	
	
	
	
	
	

	
	
	
	
	
	
	

	Computers - Hardware & Software
	#
	Each
	Total

	 - Pentium III 1.0 Ghz w/256MB RAM
	6
	$1,787.00 
	$10,722.00

	 - Microsoft Visual C++
	
	6
	$451.95 
	$2,711.70

	 - Microsoft Visual SourceSafe
	
	6
	$474.95 
	$2,849.70

	 - Discreet 3D S Max Production Bundle
	2
	$1,498.98 
	$2,997.96

	TOTAL HARDWARE/SOFTWARE COSTS
	
	
	$19,281.36

	
	
	
	
	
	
	

	Full Time Employees
	# of Months
	Per Month
	Total

	 - Producer
	
	7
	
	$5,000.00
	$35,000.00

	 - Technical Director
	
	7
	
	$5,769.23
	$40,384.61

	 - Designer
	
	7
	
	$4,615.38
	$32,307.66

	 - Technical Writer
	
	7
	
	$3,076.39
	$21,534.73

	 - Product Manager
	
	7
	
	$6,538.65
	$45,770.55

	 - Lead Tester
	
	7
	
	$4,235.67
	$29,649.69

	 - Art Director
	
	7
	
	$4,000.00
	$28,000.00

	 - Artist 1
	
	
	4
	
	$2,500.00
	$10,000.00

	 - Artist 2
	
	
	4
	
	$2,500.00
	$10,000.00.00

	
	
	
	
	
	
	

	TOTAL SALARY COSTS
	
	
	
	$252,647.24

	
	
	
	
	
	
	

	Other Expenses
	
	
	
	
	

	 - Music/Sound Effects
	
	
	
	$2,000.00

	 - Art
	
	
	
	
	
	$3,000.00

	 - Other (rent, utilities, etc)
	
	
	
	$10,000.00

	
	
	
	
	
	
	

	TOTAL MISC. COSTS
	
	
	
	$15,000.00

	
	
	
	
	
	
	

	TOTAL COSTS
	
	
	
	
	$286,928.60

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	COSTS PER UNIT
	
	
	
	
	

	
	
	
	
	
	
	

	Part
	
	
	
	
	
	

	
	
	
	
	
	
	

	CD 
	
	
	
	
	
	$1.00 

	Installation Sheet 
	
	
	
	
	$0.10 

	Data/Errata Sheet
	
	
	
	
	$0.10 

	Printed Manual
	
	
	
	
	$0.50 

	COGS (Cost of Goods Sold)
	
	
	
	$3.00 

	MDF (Marketing Development Funds)
	
	
	$1.50 

	Co-op
	
	
	
	
	
	$0.30 

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	TOTAL COST PER UNIT
	
	
	
	$6.50 

	
	
	
	
	
	
	

	Manufacturer Suggested Retail Price
	
	
	$59.99 

	Wholesale Price (What the store buys it for)
	
	$24.00 

	
	
	
	
	
	
	

	
	
	
	Each
	10,000
	16,396
	30,000

	Projected Revenue
	
	$17.50 
	$175,000
	$286,930
	$525,000

	(minus Cost Per Unit)
	
	
	
	

	
	
	
	
	
	
	

	TOTAL PROFIT
	
	
	-$111,928.60
	$1.40
	$238,071.40


Project-Planning Timeline

Par





Particle System





Particle System





Particle System








Particle Manager








LEVEL ID 4


WIDTH 8


HEIGHT 8





H3 H3 H2 H2 H1 H1 H0 H0


H0 H0 H0 H0 H0 H0 H0 H0


H0 H0 H0 H0 H0 H0 H0 H0


XX XX XX H0 H0 H0 H0 XX


XX XX XX H0 H0 H0 H0 XX


H0 H0 H0 H0 H0 H0 H0 H0


H0 H0 H0 H0 H0 H0 H0 H0


H0 H0 H0 H0 H0 T0 T0 T0





CRAZYCHARACTER





BASECHARACTER





GEOMOBJ





Par





Par





Par





Par





Par





Par





Par





Par








PAGE  
97
Crazy Cross TDD v1.1


